论文部分内容阅读
为探讨基于高光谱图像技术对沙梨糖度无损检测的可行性,采集80个沙梨样本在400~1000nm内的高光谱图像数据及其对应的糖度,采用变量标准化、多元散射校正(MSC)、平滑滤波、基线校正等方法对原始光谱数据进行预处理。发现MSC预处理效果最佳,再通过无信息变量消除法对MSC预处理后的光谱数据进行压缩,最后分别建立BP神经网络和PLS沙梨糖度预测模型。结果表明:无信息变量消除法将光谱变量压缩到234个,有效减少了建模的输入变量,建立的PLS预测模型和BP神经网络的预测相关系数均在0.85以上,而PLS预测模型