国产高分辨率遥感数据在城市森林资源监测中的应用

来源 :测绘通报 | 被引量 : 8次 | 上传用户:gzmanman
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为了满足城市森林资源精细化管理的需求,需要不断拓展国产高分辨率遥感卫星数据的应用范围。本文对国产高分辨率遥感卫星数据进行真实性检验并分析其数据特性,在此基础上开展基于国产高分辨率遥感卫星数据的城市森林资源监测的应用研究,并开发了相应的软件系统,对实现城市森林资源的自动化监测具有较高的实用价值和研究意义。
其他文献
当前洪涝灾害对社会的经济发展和人民生命财产安全构成严重威胁。无人机机动、灵活,安全性高,可迅捷甚至实时获取灾区影像,对灾情的快速评估和应急救援决策意义重大。遥感无人机在洪涝灾害救援中能够发挥的重要作用已得到广泛共识,但是由于灾害的突发性,缺乏就近部署的资源制约了无人机遥感观测和救援作用的发挥。针对突发灾害,在区域和全国范围内建立起一定的无人机遥感应急体系成为国家面向未来正在考虑的选项。基于此,本研
期刊
DEM是地形的真实表达,蕴含着丰富的地理空间信息。如何保证涉密DEM在网络环境中的安全传输是当前亟待解决的关键问题之一。本文采用三维混沌序列,对DEM文件先后进行高程置乱、位置置乱和文件头置乱,可使置乱后的数据失去高程变化的空间连续性与数值连续性。置乱数据经网络传输后,接收方仅凭用户密钥就可以实现置乱DEM数据的无损、盲式还原。基于ASCII格式DEM的置乱与还原试验表明:本文方法可以有效破坏原始
期刊
遥感信息获取过程中云是重要的干扰因素,随着国产高空间分辨率卫星数据的应用,实现数据的准确云检测对有效获取地面信息具有重要意义。本文以高分一号、高分二号多光谱影像为数据源,利用图像分割获取了同质对象,基于对象光谱、纹理和几何8种属性特征建立了规则集,以规则集为输入,利用阈值法和GURLS分类器结合进行了云检测。针对不同时相和场景的高分数据,将该方法与基于像素的最大似然法和SVM法进行了对比,结果表明
期刊