论文部分内容阅读
[摘要] 目的 探讨ANO1抑制剂T16A inh-A01(A01)对血管紧张素Ⅱ(AngⅡ)诱导的血管平滑肌细胞(VSMC)增殖及细胞外调节蛋白激酶(ERK)信号通路蛋白的影响。方法 用AngⅡ、A01处理VSMC 24 h,采用四甲基偶氮唑蓝(MTT)法检测细胞存活率,采用Western blot法检测增殖细胞核抗原(PCNA)、磷酸化ERK(p-ERK)蛋白表达。结果 与对照组相比,AngⅡ使细胞存活率升高至(121.2±2.4)%,10~20 μmol/L A01能够明显抑制该作用(F=63.64,P<0.01)。AngⅡ处理细胞后,PCNA蛋白表达水平升高,该效应可被20 μmol/L A01部分抑制(F=15.82,P<0.01)。此外,AngⅡ还增加了p-ERK蛋白的表达,该作用也可被A01显著抑制(F=36.01,P<0.01)。结论 A01对AngⅡ诱导的VSMC增殖具有抑制作用,该作用可能与激活ERK信号通路相关。
[关键词] ANO1抑制剂;血管紧张素Ⅱ;血管;肌细胞,平滑肌;细胞增殖
[中图分类号] R544;R329.25 [文献标志码] A [文章编号] 2096-5532(2020)02-0190-04
doi:10.11712/jms.2096-5532.2020.56.056 [开放科学(资源服务)标识码(OSID)]
[网络出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200409.0847.001.html;2020-04-09 11:09
[ABSTRACT] Objective To investigate the effect of ANO1 inhibitor T16A inh-A01 (A01) on angiotensin Ⅱ (Ang Ⅱ)-induced proliferation of vascular smooth muscle cells (VSMCs) and extracellular regulated protein kinase (ERK) signaling pathway proteins. Methods VSMCs were treated with Ang Ⅱ and A01, respectively, for 24 h. The survival rate of cells was determined by MTT assay, and the protein expression of proliferating cell nuclear antigen (PCNA) and phosphorylated ERK (p-ERK) was determined by Western blot. Results Ang Ⅱ increased the survival rate of cells to 121.2%±2.4% (as compared with that of the control group), which could be significantly inhibited by 10-20 μmol/L A01 (F=63.64,P<0.01). After the cells were treated with Ang Ⅱ, the protein expression level of PCNA was increased, which could be partially inhibited by 20 μmol/L A01 (F=15.82,P<0.01). In addition, Ang Ⅱ increased the protein expression of p-ERK, which could also be significantly inhibited by A01 (F=36.01,P<0.01). Conclusion A01 can inhibit Ang Ⅱ-induced proliferation of VSMCs, which may be related to activation of the ERK signaling pathway.
[KEY WORDS] ANO1 inhibitor; angiotensin Ⅱ; blood vessels; myocytes, smooth muscle; cell proliferation
原發性高血压是导致动脉粥样硬化、脑卒中等心脑血管疾病的高危因素,因此,如何有效防治高血压的发生发展对于预防心脑血管疾病至关重要。肾素-血管紧张素系统(RAS)是调节体液平衡和血压的重要系统。大量的研究结果表明,血液循环或组织内RAS的异常激活是导致高血压形成和发展的重要发病机制之一[1]。血管紧张素Ⅱ(AngⅡ)是RAS的主要活性物质,不仅可以诱导血管收缩和外周血管阻力增加,还可以通过激活细胞外调节蛋白激酶(ERK)和蛋白激酶C(PKC)、增加细胞内活性氧(ROS)和钙水平等信号通路,刺激血管平滑肌细胞(VSMC)的异常增殖和迁移,从而促进血管重构的发生[2-3]。ANO1是新近发现的钙激活氯通道(CaCC),在心血管系统有广泛的分布[4-5]。ANO1参与血管舒缩功能的调节,利用ANO1特异性抑制剂T16A inh-A01(A01)可以明显抑制VSMC的CaCC电流,并抑制甲氧胺诱导的血管条收缩[6-7]。在肺动脉高压研究中,ANO1促进了肺动脉血管细胞的增殖[8]。我们的前期研究显示,AngⅡ上调了VSMC的ANO1蛋白表达,但是ANO1表达上调是否参与了AngⅡ诱导的VSMC增殖,需要进一步探讨。本研究主要观察了ANO1抑制剂A01对AngⅡ诱导的VSMC增殖的影响及ERK信号通路的变化,以期为高血压血管重构的防治提供新的治疗策略。现将结果报告如下。 1 材料与方法
1.1 试剂和仪器
AngⅡ购自ApexBio公司,A01购自Sigma公司,增殖细胞核抗原(PCNA)、ERK和磷酸化ERK(p-ERK)抗体由Cell Signaling Technology公司提供,β-actin抗体为北京博奥森公司产品,四甲基偶氮唑蓝(MTT)购自Solarbio(北京)公司,DMEM高糖培养粉为Gibco公司产品,胎牛血清为BI公司产品,RIPA裂解液购自碧云天生物科技研究所,BCA蛋白定量检测试剂盒为Thermo公司产品。所用仪器包括CO2培养箱、超净工作台、pectraMax M5多功能酶标仪和Western 显影仪。
1.2 VSMC的原代培养
取体质量100 g的Wistar大鼠,用80 g/L水合氯醛(400 mg/kg)麻醉,置于体积分数0.70的乙醇中浸泡后,在无菌操作台内迅速打开胸腔,取出胸主动脉,去除血管内皮,将血管条剪成小块(大小约1 mm3),置于培养瓶的底面贴壁5 h后翻转培养瓶,使组织块浸在含体积分数为0.20胎牛血清的DMEM培养液中,在37 ℃、含体积分数0.05 CO2培养箱中培养1周左右。VSMC在血管块的周围贴壁长出,当细胞达到60%~70%融合后进行传代,选取生长状态良好的第5~8代细胞进行实验。
1.3 实验分组及药物处理
实验1观察A01对AngⅡ诱导VSMC细胞活力的影响,将细胞分为对照组(无药物处理)、AngⅡ组(用100 μmol/L AngⅡ孵育24 h)、A01+AngⅡ组(分别用1、5、10、20 μmol/L A01和100 μmol/L AngⅡ孵育24 h)、A01组(用20 μmol/L A01孵育24 h)。实验2观察A01对AngⅡ诱导的VSMC中PCNA蛋白表达的影响,将细胞分为对照组(无任何药物处理)、AngⅡ组(用100 μmol/L AngⅡ孵育24 h)、A01+AngⅡ组(应用20 μmol/L A01和100 μmol/L AngⅡ孵育24 h)、A01组(用20 μmol/L A01孵育24 h)。实验3观察A01对AngⅡ诱导的VSMC中ERK信号通路的影响,将细胞分对照组(无药物处理)、AngⅡ組(用100 μmol/L AngⅡ孵育5 min)、A01+AngⅡ组(用20 μmol/L A01和100 μmol/L AngⅡ孵育5 min)以及A01组(用20 μmol/L A01孵育5 min)。
1.4 细胞存活率检测
采用MTT法检测细胞存活率。调整VSMC密度为108/L,取细胞悬液以每孔100 μL接种于96孔板(每孔10 000个细胞)。药物处理结束后,吸除培养液,每孔加入5 g/L MTT 20 μL继续避光培养4 h,弃上清,每孔加二甲基亚砜(DMSO)150 μL溶解蓝色的甲瓒颗粒,室温避光孵育10 min,用酶标仪测定波长570 nm 处的吸光度(A570)。实验重复3次,取平均值。
1.5 Western blot检测PCNA、p-ERK蛋白表达
药物处理结束后提取蛋白,用BCA蛋白定量试剂盒检测蛋白浓度。每个样品以20 μg蛋白上样,经SDS-PAGE电泳后转移至PVDF膜上,用100 g/L的脱脂奶粉溶液室温封闭1 h,分别加入PCNA(1∶2 000)、ERK(1∶1 000)、p-ERK(1∶1 000)和β-actin(1∶10 000)抗体(一抗),在4 ℃摇床上孵育过夜,以TBST洗膜3次后,加入二抗,在室温下摇床上孵育1 h,以TBST再洗膜3次后,用ECL发光剂显影。用Image J软件分析条带灰度值。结果以PCNA/β-actin和p-ERK/ERK的比值表示。实验重复3次,取平均值。
1.6 统计学分析
应用SPSS 22.0软件进行统计学分析,所得计量资料结果以±s表示,双因素影响组间比较采用双因素方差分析,多因素影响组间比较采用析因设计方差分析,以P<0.05为差异有统计学意义。
2 结 果
2.1 A01对细胞存活率的影响
对照组细胞存活率为(100.0±1.7)%,AngⅡ处理细胞24 h后细胞存活率升高至(121.2±2.4)%,1、5、10、20 μmol/L A01使细胞存活率分别降至(112.6±1.5)%、(109.9±1.5)%、(84.3±1.9)%和(78.3±1.8)%(n=3)。双因素方差分析显示,AngⅡ和A01两种因素存在交互效应(F=114.68,P<0.01),进而进行简单效应分析。20 μmol/L A01+AngⅡ组细胞存活率较AngⅡ组明显下降,差异具有统计学意义(F=63.64,P<0.01)。A01组细胞存活率为(99.0±2.0)%,与对照组比较差异无统计学意义(P>0.05),表明单纯应用20 μmol/L A01处理对细胞存活率没有明显影响,可以排除A01毒性作用。
2.2 A01对PCNA蛋白表达的影响
对照组、AngⅡ组、A01+AngⅡ组、A01组细胞PCNA蛋白表达水平分别为(100.0±4.1)%、(161.8±8.1)%、(106.2±1.4)%和(100.0±10.4)%(n=3)。析因设计方差分析显示,AngⅡ和A01两种因素存在交互效应(F=15.94,P<0.01),进而进行简单效应分析。AngⅡ组与对照组相比PCNA蛋白表达明显上调,差异具有统计学意义(F=23.65,P<0.01);与AngⅡ组相比,A01+AngⅡ组PCNA蛋白表达下降,差异具有统计学意义(F=15.82,P<0.01),而单独使用A01对PCNA蛋白表达没有明显影响(P>0.05)。见图1。
2.3 A01对p-ERK蛋白表达的影响 对照组、AngⅡ组、A01+AngⅡ组、A01组细胞p-ERK蛋白的表达水平分别为(100.0±0.6)%、(154.3±8.3)%、(90.1±10.3)%和(97.0±3.8)%(n=3)。析因設计方差分析显示,AngⅡ和A01两种因素存在交互效应(F=8.15,P<0.05),进而进行简单效应分析。与对照组相比,AngⅡ组p-ERK蛋白表达明显上调(F=21.50,P<0.01);与AngⅡ组相比,A01+AngⅡ组蛋白表达明显下降,差异具有统计学意义(F=36.01,P<0.01);而单独使用A01对p-ERK蛋白表达没有明显影响(P>0.05)。见图2。
3 讨 论
长期的高血压会引起血管结构和功能的改变,即血管重构,是导致高血压恶化发展和靶器官损伤的重要病理生理学基础[9]。血管重构通过细胞增殖、凋亡和迁移以及细胞外基质重排而改变血管结构和功能,其中VSMC作为血管壁的主体细胞,其增殖及收缩功能增强在高血压的发生发展过程中发挥了至关重要的作用[10]。VSMC增殖和血管纤维化是血管重塑和硬化的两个重要变化,是高血压发生和发展的动力[11-13]。
AngⅡ为RAS中的最主要的活性物质,血液循环和血管壁局部产生的AngⅡ可结合血管紧张素1型受体(AT1R),通过激活PLC/IP3、PKC、MAPK等多条信号通路,促进VSMC的蛋白和DNA合成以及细胞迁移[14]。AngⅡ作为有丝分裂原,能够加速细胞周期进程[15],刺激VSMC蛋白合成,使得VSMC异常增殖[16],导致血管重构。ANO1存在于血管平滑肌的各个部位[17-18],是血管平滑肌上的CaCC,可以参与血管功能的调节。有文献报道,ANO1高表达促进了肺血管的重构[4]。ANO1有助于增强人类心脏成纤维细胞中的CaCC电流,并且这受AngⅡ通过AT1R途径的作用所调节[19]。高血压大鼠血管组织中ANO1是高表达的,并且ANO1可促进细胞增殖[20]。研究表明,ANO1参与VSMC的增殖和高血压诱导的脑血管重塑[21]。我们的前期实验已表明,AngⅡ增加了正常大鼠原代培养VSMC上ANO1的表达,提示ANO1可能参与了AngⅡ诱导的VSMC的增殖过程。PCNA是评价细胞是否处于增殖状态的重要标记[22],其表达水平可反映VSMC的增殖活性。本文的研究结果显示,ANO1抑制剂A01能够显著抑制AngⅡ诱导的VSMC的活性及PCNA蛋白表达。以上结果提示,在VSMC中AngⅡ通过增加细胞活性促进增殖,并且AngⅡ与ANO1之间相互促进,共同参与了高血压的发展。
ERK属于丝裂原活化蛋白激酶家族。ERK信号通路由有丝分裂原刺激激活并在调节细胞增殖和分化中具有重要地位。ERK信号通路参与多种生物学反应,包括刺激生长因子的释放,参与细胞增殖、迁移、侵袭和凋亡的调控等。其中细胞增殖主要体现在细胞数量增加和PCNA蛋白表达水平升高。ERK信号通路参与调节成骨细胞的增殖已经被证实[23],ERK1/2激活影响VSMC增殖肥大[24-26]。越来越多的研究表明,VSMC增殖、迁移通过ERK信号通路实现[27]。
本文研究结果表明,A01通过抑制ERK信号途径抑制由AngⅡ诱导的VSMC增殖。当局部的RAS功能增强时,AngⅡ通过ERK信号通路使得ANO1高表达,VSMC异常增殖,导致高血压血管重构。ANO1对心血管功能的调控是国际上新的研究热点,阻断或逆转高血压血管重构是高血压防治的关键环节,希望本实验结果能为高血压血管重构的防治提供新的治疗策略。
[参考文献]
[1] MCKINNEY C A, FATTAH C, LOUGHREY C M, et al.Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodeling[J]. Clinical Science, 2014,126(12):815-827.
[2] BORGHI C, URSO R, CICERO A F. Renin-angiotensin system at the crossroad of hypertens-ion and hypercholesterolemia[J]. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 2017,27(2):115-120.
[3] EGUCHI S, KAWAI T, SCALIA R, et al. Understanding angiotensin Ⅱ type 1 receptor signaling in vascular pathophysio-logy[J]. Hypertension, 2018,71(5):804-810.
[4] YANG Y D, CHO H, KOO J Y, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008,455(7217):1210-1215.
[5] SCHROEDER B C, CHENG T, JAN Y N, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008,134(6):1019-1029.
[6] DAVIS A J, SHI J, PRITCHARD H A, et al. Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01[J]. British Journal of Pharmacology, 2013,168(3):773-784. [7] HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. Journal of Clinical Investigation, 2014,124(2):675-686.
[8] ALLAWZI A M, VANG A, CLEMENTS R T, et al. Activation of anoctamin-1 limits pulmonary endothelial cell proliferation via p38-mitogen-activated protein kinase-dependent apoptosis[J]. American Journal of Respiratory Cell and Molecular Biology, 2018,58(5):658-667.
[9] HERMIDA R C, AYALA D E, FERNNDEZ J R, et al. Hypertension: new perspective on its definition and clinical ma-nagement by bedtime therapy substantially reduces cardiovascular disease risk[J]. European Journal of Clinical Investigation, 2018,48(5):e12909.
[10] XIAO Q, PRUSSIA A, YU K, et al. Regulation of bestrophin Cl channels by calcium: role of the C terminus[J]. Journal of General Physiology, 2008,132(6):681-692.
[11] RIZZONI D, AGABITI R E. Small artery remodeling in hypertension and diabetes[J]. Curr Hypertens Rep, 2006,8(1):90-95.
[12] PONTICOS M, SMITH B D. Extracellular matrix synthesis in vascular disease hypertension, and atherosclerosis[J]. Biomed Res, 2014,28(1):25-39.
[13] XU J, SHI G P. Vascular wall extracellular matrix proteins and vascular diseases[J]. Biochim Biophys Acta, 2014,1842:2106-2119.
[14] THOMAS G C, NEEB Z P, BULLEY S, et al. TMEM16A channels generate Ca2+-activated Cl- currents in cerebral artery smooth muscle cells[J]. American Journal of Physiolo-gy-Heart and Circulatory Physiology, 2011,301(5):H1819-H1827.
[15] MEHTA P K, GRIENDLING K K. Angiotensin Ⅱ cell signaling: physiological and pathological effects in the cardiovascular system[J]. American Journal of Physiology-Cell Physio-logy, 2007,292(1):C82-C97.
[16] KIM S, WAO H. Molecular and cellular mechanisms of angioteminⅡ-mediated cardiovascular and renal diseases[J]. Pharmacological Reviews, 2000,52(1):11-34.
[17] MANOURY B, TAMULEVICIUTE A, TAMMARO P. TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells[J]. The Journal of Physiology, 2010,588(Pt 13):2305-2314.
[18] FORREST A S, JOYCE T C, HUEBNER M L, et al. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension[J]. American Journal of Physiology-Cell Physiology, 2012,303(12):C1229-C1243.
[19] EI CHEMALY A, NOREZ C, MAGAUD C, et al. ANO1 contributes to angiotensinⅡ-activated Ca2+ dependent Cl-current in human atrial fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2014,68:12-19. [20] WANG Bingxiang, LI Chunlin, HUAI Ruituo, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl channel, contributes to spontaneous hypertension[J]. Journal of Molecular and Cellular Cardiology, 2015,82:22-32.
[21] ZENG Jiawei, CHEN Baoyi. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells[J]. British Journal of Pharmacology, 2018,175(18):3669-3684.
[22] MAGA G, HUBSCHER U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners[J]. Journal of Cell Science, 2003,116(Pt 15):3051-3060.
[23] LAU K H, BAYLINK D J. Molecular mechanism of action of fluoride on bone cells[J]. J Bone Miner Res, 1998,13:1660-1667.
[24] LIAO D F, MONIA B, DEAN N, et al. Protein kinase C-zeta mediates angiotensin Ⅱ activation of ERK1/2 in vascular smooth muscle cells[J]. J Biol Chem, 1997,272:6146-6150.
[25] LEE D H, KIM J E, KANG Y J, et al. Insulin like growth factor binding protein-5 regulates excessive vascular smooth muscle cell proliferation in spontaneously hypertensive rats via ERK1/2 phosphorylation[J]. The Korean Journal of Physiology & Pharmacology, 2013,17(2):157-162.
[26] LIU G, HITOMI H, RAHMAN A, et al. High sodium augments angiotensin Ⅱ-induced vascular smooth muscle cell proliferation through the ERK1/2-dependent pathway[J]. Hypertension Research, 2014,37(1):13-18.
[27] KIM J Y, KIM K H, LEE W R, et al. Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway[J]. Vascul Pharmacol, 2015,70:8-14.
(本文編辑 马伟平)
[关键词] ANO1抑制剂;血管紧张素Ⅱ;血管;肌细胞,平滑肌;细胞增殖
[中图分类号] R544;R329.25 [文献标志码] A [文章编号] 2096-5532(2020)02-0190-04
doi:10.11712/jms.2096-5532.2020.56.056 [开放科学(资源服务)标识码(OSID)]
[网络出版] http://kns.cnki.net/kcms/detail/37.1517.R.20200409.0847.001.html;2020-04-09 11:09
[ABSTRACT] Objective To investigate the effect of ANO1 inhibitor T16A inh-A01 (A01) on angiotensin Ⅱ (Ang Ⅱ)-induced proliferation of vascular smooth muscle cells (VSMCs) and extracellular regulated protein kinase (ERK) signaling pathway proteins. Methods VSMCs were treated with Ang Ⅱ and A01, respectively, for 24 h. The survival rate of cells was determined by MTT assay, and the protein expression of proliferating cell nuclear antigen (PCNA) and phosphorylated ERK (p-ERK) was determined by Western blot. Results Ang Ⅱ increased the survival rate of cells to 121.2%±2.4% (as compared with that of the control group), which could be significantly inhibited by 10-20 μmol/L A01 (F=63.64,P<0.01). After the cells were treated with Ang Ⅱ, the protein expression level of PCNA was increased, which could be partially inhibited by 20 μmol/L A01 (F=15.82,P<0.01). In addition, Ang Ⅱ increased the protein expression of p-ERK, which could also be significantly inhibited by A01 (F=36.01,P<0.01). Conclusion A01 can inhibit Ang Ⅱ-induced proliferation of VSMCs, which may be related to activation of the ERK signaling pathway.
[KEY WORDS] ANO1 inhibitor; angiotensin Ⅱ; blood vessels; myocytes, smooth muscle; cell proliferation
原發性高血压是导致动脉粥样硬化、脑卒中等心脑血管疾病的高危因素,因此,如何有效防治高血压的发生发展对于预防心脑血管疾病至关重要。肾素-血管紧张素系统(RAS)是调节体液平衡和血压的重要系统。大量的研究结果表明,血液循环或组织内RAS的异常激活是导致高血压形成和发展的重要发病机制之一[1]。血管紧张素Ⅱ(AngⅡ)是RAS的主要活性物质,不仅可以诱导血管收缩和外周血管阻力增加,还可以通过激活细胞外调节蛋白激酶(ERK)和蛋白激酶C(PKC)、增加细胞内活性氧(ROS)和钙水平等信号通路,刺激血管平滑肌细胞(VSMC)的异常增殖和迁移,从而促进血管重构的发生[2-3]。ANO1是新近发现的钙激活氯通道(CaCC),在心血管系统有广泛的分布[4-5]。ANO1参与血管舒缩功能的调节,利用ANO1特异性抑制剂T16A inh-A01(A01)可以明显抑制VSMC的CaCC电流,并抑制甲氧胺诱导的血管条收缩[6-7]。在肺动脉高压研究中,ANO1促进了肺动脉血管细胞的增殖[8]。我们的前期研究显示,AngⅡ上调了VSMC的ANO1蛋白表达,但是ANO1表达上调是否参与了AngⅡ诱导的VSMC增殖,需要进一步探讨。本研究主要观察了ANO1抑制剂A01对AngⅡ诱导的VSMC增殖的影响及ERK信号通路的变化,以期为高血压血管重构的防治提供新的治疗策略。现将结果报告如下。 1 材料与方法
1.1 试剂和仪器
AngⅡ购自ApexBio公司,A01购自Sigma公司,增殖细胞核抗原(PCNA)、ERK和磷酸化ERK(p-ERK)抗体由Cell Signaling Technology公司提供,β-actin抗体为北京博奥森公司产品,四甲基偶氮唑蓝(MTT)购自Solarbio(北京)公司,DMEM高糖培养粉为Gibco公司产品,胎牛血清为BI公司产品,RIPA裂解液购自碧云天生物科技研究所,BCA蛋白定量检测试剂盒为Thermo公司产品。所用仪器包括CO2培养箱、超净工作台、pectraMax M5多功能酶标仪和Western 显影仪。
1.2 VSMC的原代培养
取体质量100 g的Wistar大鼠,用80 g/L水合氯醛(400 mg/kg)麻醉,置于体积分数0.70的乙醇中浸泡后,在无菌操作台内迅速打开胸腔,取出胸主动脉,去除血管内皮,将血管条剪成小块(大小约1 mm3),置于培养瓶的底面贴壁5 h后翻转培养瓶,使组织块浸在含体积分数为0.20胎牛血清的DMEM培养液中,在37 ℃、含体积分数0.05 CO2培养箱中培养1周左右。VSMC在血管块的周围贴壁长出,当细胞达到60%~70%融合后进行传代,选取生长状态良好的第5~8代细胞进行实验。
1.3 实验分组及药物处理
实验1观察A01对AngⅡ诱导VSMC细胞活力的影响,将细胞分为对照组(无药物处理)、AngⅡ组(用100 μmol/L AngⅡ孵育24 h)、A01+AngⅡ组(分别用1、5、10、20 μmol/L A01和100 μmol/L AngⅡ孵育24 h)、A01组(用20 μmol/L A01孵育24 h)。实验2观察A01对AngⅡ诱导的VSMC中PCNA蛋白表达的影响,将细胞分为对照组(无任何药物处理)、AngⅡ组(用100 μmol/L AngⅡ孵育24 h)、A01+AngⅡ组(应用20 μmol/L A01和100 μmol/L AngⅡ孵育24 h)、A01组(用20 μmol/L A01孵育24 h)。实验3观察A01对AngⅡ诱导的VSMC中ERK信号通路的影响,将细胞分对照组(无药物处理)、AngⅡ組(用100 μmol/L AngⅡ孵育5 min)、A01+AngⅡ组(用20 μmol/L A01和100 μmol/L AngⅡ孵育5 min)以及A01组(用20 μmol/L A01孵育5 min)。
1.4 细胞存活率检测
采用MTT法检测细胞存活率。调整VSMC密度为108/L,取细胞悬液以每孔100 μL接种于96孔板(每孔10 000个细胞)。药物处理结束后,吸除培养液,每孔加入5 g/L MTT 20 μL继续避光培养4 h,弃上清,每孔加二甲基亚砜(DMSO)150 μL溶解蓝色的甲瓒颗粒,室温避光孵育10 min,用酶标仪测定波长570 nm 处的吸光度(A570)。实验重复3次,取平均值。
1.5 Western blot检测PCNA、p-ERK蛋白表达
药物处理结束后提取蛋白,用BCA蛋白定量试剂盒检测蛋白浓度。每个样品以20 μg蛋白上样,经SDS-PAGE电泳后转移至PVDF膜上,用100 g/L的脱脂奶粉溶液室温封闭1 h,分别加入PCNA(1∶2 000)、ERK(1∶1 000)、p-ERK(1∶1 000)和β-actin(1∶10 000)抗体(一抗),在4 ℃摇床上孵育过夜,以TBST洗膜3次后,加入二抗,在室温下摇床上孵育1 h,以TBST再洗膜3次后,用ECL发光剂显影。用Image J软件分析条带灰度值。结果以PCNA/β-actin和p-ERK/ERK的比值表示。实验重复3次,取平均值。
1.6 统计学分析
应用SPSS 22.0软件进行统计学分析,所得计量资料结果以±s表示,双因素影响组间比较采用双因素方差分析,多因素影响组间比较采用析因设计方差分析,以P<0.05为差异有统计学意义。
2 结 果
2.1 A01对细胞存活率的影响
对照组细胞存活率为(100.0±1.7)%,AngⅡ处理细胞24 h后细胞存活率升高至(121.2±2.4)%,1、5、10、20 μmol/L A01使细胞存活率分别降至(112.6±1.5)%、(109.9±1.5)%、(84.3±1.9)%和(78.3±1.8)%(n=3)。双因素方差分析显示,AngⅡ和A01两种因素存在交互效应(F=114.68,P<0.01),进而进行简单效应分析。20 μmol/L A01+AngⅡ组细胞存活率较AngⅡ组明显下降,差异具有统计学意义(F=63.64,P<0.01)。A01组细胞存活率为(99.0±2.0)%,与对照组比较差异无统计学意义(P>0.05),表明单纯应用20 μmol/L A01处理对细胞存活率没有明显影响,可以排除A01毒性作用。
2.2 A01对PCNA蛋白表达的影响
对照组、AngⅡ组、A01+AngⅡ组、A01组细胞PCNA蛋白表达水平分别为(100.0±4.1)%、(161.8±8.1)%、(106.2±1.4)%和(100.0±10.4)%(n=3)。析因设计方差分析显示,AngⅡ和A01两种因素存在交互效应(F=15.94,P<0.01),进而进行简单效应分析。AngⅡ组与对照组相比PCNA蛋白表达明显上调,差异具有统计学意义(F=23.65,P<0.01);与AngⅡ组相比,A01+AngⅡ组PCNA蛋白表达下降,差异具有统计学意义(F=15.82,P<0.01),而单独使用A01对PCNA蛋白表达没有明显影响(P>0.05)。见图1。
2.3 A01对p-ERK蛋白表达的影响 对照组、AngⅡ组、A01+AngⅡ组、A01组细胞p-ERK蛋白的表达水平分别为(100.0±0.6)%、(154.3±8.3)%、(90.1±10.3)%和(97.0±3.8)%(n=3)。析因設计方差分析显示,AngⅡ和A01两种因素存在交互效应(F=8.15,P<0.05),进而进行简单效应分析。与对照组相比,AngⅡ组p-ERK蛋白表达明显上调(F=21.50,P<0.01);与AngⅡ组相比,A01+AngⅡ组蛋白表达明显下降,差异具有统计学意义(F=36.01,P<0.01);而单独使用A01对p-ERK蛋白表达没有明显影响(P>0.05)。见图2。
3 讨 论
长期的高血压会引起血管结构和功能的改变,即血管重构,是导致高血压恶化发展和靶器官损伤的重要病理生理学基础[9]。血管重构通过细胞增殖、凋亡和迁移以及细胞外基质重排而改变血管结构和功能,其中VSMC作为血管壁的主体细胞,其增殖及收缩功能增强在高血压的发生发展过程中发挥了至关重要的作用[10]。VSMC增殖和血管纤维化是血管重塑和硬化的两个重要变化,是高血压发生和发展的动力[11-13]。
AngⅡ为RAS中的最主要的活性物质,血液循环和血管壁局部产生的AngⅡ可结合血管紧张素1型受体(AT1R),通过激活PLC/IP3、PKC、MAPK等多条信号通路,促进VSMC的蛋白和DNA合成以及细胞迁移[14]。AngⅡ作为有丝分裂原,能够加速细胞周期进程[15],刺激VSMC蛋白合成,使得VSMC异常增殖[16],导致血管重构。ANO1存在于血管平滑肌的各个部位[17-18],是血管平滑肌上的CaCC,可以参与血管功能的调节。有文献报道,ANO1高表达促进了肺血管的重构[4]。ANO1有助于增强人类心脏成纤维细胞中的CaCC电流,并且这受AngⅡ通过AT1R途径的作用所调节[19]。高血压大鼠血管组织中ANO1是高表达的,并且ANO1可促进细胞增殖[20]。研究表明,ANO1参与VSMC的增殖和高血压诱导的脑血管重塑[21]。我们的前期实验已表明,AngⅡ增加了正常大鼠原代培养VSMC上ANO1的表达,提示ANO1可能参与了AngⅡ诱导的VSMC的增殖过程。PCNA是评价细胞是否处于增殖状态的重要标记[22],其表达水平可反映VSMC的增殖活性。本文的研究结果显示,ANO1抑制剂A01能够显著抑制AngⅡ诱导的VSMC的活性及PCNA蛋白表达。以上结果提示,在VSMC中AngⅡ通过增加细胞活性促进增殖,并且AngⅡ与ANO1之间相互促进,共同参与了高血压的发展。
ERK属于丝裂原活化蛋白激酶家族。ERK信号通路由有丝分裂原刺激激活并在调节细胞增殖和分化中具有重要地位。ERK信号通路参与多种生物学反应,包括刺激生长因子的释放,参与细胞增殖、迁移、侵袭和凋亡的调控等。其中细胞增殖主要体现在细胞数量增加和PCNA蛋白表达水平升高。ERK信号通路参与调节成骨细胞的增殖已经被证实[23],ERK1/2激活影响VSMC增殖肥大[24-26]。越来越多的研究表明,VSMC增殖、迁移通过ERK信号通路实现[27]。
本文研究结果表明,A01通过抑制ERK信号途径抑制由AngⅡ诱导的VSMC增殖。当局部的RAS功能增强时,AngⅡ通过ERK信号通路使得ANO1高表达,VSMC异常增殖,导致高血压血管重构。ANO1对心血管功能的调控是国际上新的研究热点,阻断或逆转高血压血管重构是高血压防治的关键环节,希望本实验结果能为高血压血管重构的防治提供新的治疗策略。
[参考文献]
[1] MCKINNEY C A, FATTAH C, LOUGHREY C M, et al.Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodeling[J]. Clinical Science, 2014,126(12):815-827.
[2] BORGHI C, URSO R, CICERO A F. Renin-angiotensin system at the crossroad of hypertens-ion and hypercholesterolemia[J]. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 2017,27(2):115-120.
[3] EGUCHI S, KAWAI T, SCALIA R, et al. Understanding angiotensin Ⅱ type 1 receptor signaling in vascular pathophysio-logy[J]. Hypertension, 2018,71(5):804-810.
[4] YANG Y D, CHO H, KOO J Y, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008,455(7217):1210-1215.
[5] SCHROEDER B C, CHENG T, JAN Y N, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008,134(6):1019-1029.
[6] DAVIS A J, SHI J, PRITCHARD H A, et al. Potent vasorelaxant activity of the TMEM16A inhibitor T16A(inh)-A01[J]. British Journal of Pharmacology, 2013,168(3):773-784. [7] HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. Journal of Clinical Investigation, 2014,124(2):675-686.
[8] ALLAWZI A M, VANG A, CLEMENTS R T, et al. Activation of anoctamin-1 limits pulmonary endothelial cell proliferation via p38-mitogen-activated protein kinase-dependent apoptosis[J]. American Journal of Respiratory Cell and Molecular Biology, 2018,58(5):658-667.
[9] HERMIDA R C, AYALA D E, FERNNDEZ J R, et al. Hypertension: new perspective on its definition and clinical ma-nagement by bedtime therapy substantially reduces cardiovascular disease risk[J]. European Journal of Clinical Investigation, 2018,48(5):e12909.
[10] XIAO Q, PRUSSIA A, YU K, et al. Regulation of bestrophin Cl channels by calcium: role of the C terminus[J]. Journal of General Physiology, 2008,132(6):681-692.
[11] RIZZONI D, AGABITI R E. Small artery remodeling in hypertension and diabetes[J]. Curr Hypertens Rep, 2006,8(1):90-95.
[12] PONTICOS M, SMITH B D. Extracellular matrix synthesis in vascular disease hypertension, and atherosclerosis[J]. Biomed Res, 2014,28(1):25-39.
[13] XU J, SHI G P. Vascular wall extracellular matrix proteins and vascular diseases[J]. Biochim Biophys Acta, 2014,1842:2106-2119.
[14] THOMAS G C, NEEB Z P, BULLEY S, et al. TMEM16A channels generate Ca2+-activated Cl- currents in cerebral artery smooth muscle cells[J]. American Journal of Physiolo-gy-Heart and Circulatory Physiology, 2011,301(5):H1819-H1827.
[15] MEHTA P K, GRIENDLING K K. Angiotensin Ⅱ cell signaling: physiological and pathological effects in the cardiovascular system[J]. American Journal of Physiology-Cell Physio-logy, 2007,292(1):C82-C97.
[16] KIM S, WAO H. Molecular and cellular mechanisms of angioteminⅡ-mediated cardiovascular and renal diseases[J]. Pharmacological Reviews, 2000,52(1):11-34.
[17] MANOURY B, TAMULEVICIUTE A, TAMMARO P. TMEM16A/anoctamin 1 protein mediates calcium-activated chloride currents in pulmonary arterial smooth muscle cells[J]. The Journal of Physiology, 2010,588(Pt 13):2305-2314.
[18] FORREST A S, JOYCE T C, HUEBNER M L, et al. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension[J]. American Journal of Physiology-Cell Physiology, 2012,303(12):C1229-C1243.
[19] EI CHEMALY A, NOREZ C, MAGAUD C, et al. ANO1 contributes to angiotensinⅡ-activated Ca2+ dependent Cl-current in human atrial fibroblasts[J]. Journal of Molecular and Cellular Cardiology, 2014,68:12-19. [20] WANG Bingxiang, LI Chunlin, HUAI Ruituo, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl channel, contributes to spontaneous hypertension[J]. Journal of Molecular and Cellular Cardiology, 2015,82:22-32.
[21] ZENG Jiawei, CHEN Baoyi. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells[J]. British Journal of Pharmacology, 2018,175(18):3669-3684.
[22] MAGA G, HUBSCHER U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners[J]. Journal of Cell Science, 2003,116(Pt 15):3051-3060.
[23] LAU K H, BAYLINK D J. Molecular mechanism of action of fluoride on bone cells[J]. J Bone Miner Res, 1998,13:1660-1667.
[24] LIAO D F, MONIA B, DEAN N, et al. Protein kinase C-zeta mediates angiotensin Ⅱ activation of ERK1/2 in vascular smooth muscle cells[J]. J Biol Chem, 1997,272:6146-6150.
[25] LEE D H, KIM J E, KANG Y J, et al. Insulin like growth factor binding protein-5 regulates excessive vascular smooth muscle cell proliferation in spontaneously hypertensive rats via ERK1/2 phosphorylation[J]. The Korean Journal of Physiology & Pharmacology, 2013,17(2):157-162.
[26] LIU G, HITOMI H, RAHMAN A, et al. High sodium augments angiotensin Ⅱ-induced vascular smooth muscle cell proliferation through the ERK1/2-dependent pathway[J]. Hypertension Research, 2014,37(1):13-18.
[27] KIM J Y, KIM K H, LEE W R, et al. Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway[J]. Vascul Pharmacol, 2015,70:8-14.
(本文編辑 马伟平)