论文部分内容阅读
应用可见-近红外漫反射光谱在570~1848nm光谱区域内,建立了软枣猕猴桃总酚定量数学模型。实验将贮藏分三个阶段(采收阶段,贮藏12d,贮藏24d)进行,通过对比分析不同建模方法得到软枣猕猴桃总酚定标模型。结果表明,应用偏最小二乘回归算法、一阶导数处理和反相多元离散校正处理所建软枣猕猴桃总酚定标模型的预测性能较好。定标集样本的交互验证相关系数(Rcv)为0.8939,交互验证均方根误差(RMSECV)为11.6734mg/100g;预测集样本的相关系数(Rp)为0.8627,预测均方根误差(RMSEP)