论文部分内容阅读
为了获得决策系统中属性的极小相对约简,将决策表中相对于每个条件属性的集合和划分的粗糙逼近精度作为衡量属性重要程度的准则,并以此作为启发式信息引入遗传算法,提出一种在优化初始种群的基础上提高算法性能的启发式遗传算法。通过构造一个修正算子并将其引入启发式信息,以保证被选择的属性子集的分类能力不变。该算子利用启发式信息的局部搜索技术,使得算法既保持了整体的优化特性,又具有较快的收敛速度。实例证明,该算法能有效地对决策系统进行约简。