论文部分内容阅读
交互多模型算法(IMM)的子滤波器都是基于Kalman滤波的,它要求知道精确的噪声统计特性,然而在许多情况下噪声信号的统计特性是未知的,只能得到噪声信号的近似模型,这在一定程度上降低了IMM算法的跟踪精度。基于以上问题,将H∞滤波算法应用于IMM算法的滤波过程。H∞滤波对干扰信号的统计特性不作任何假设,与Kalman滤波相比,H∞滤波器对噪声形式的不确定性不太敏感,鲁棒性好。在跟踪过程中还引入了一种数值稳健的模型概率计算方法,能有效防止计算过程中出现数值溢出现象,提高了算法的可靠性。最后通过仿真实验,证明