壳聚糖水热炭低浓度KOH活化制备多孔炭材料及其CO2吸附性能

来源 :新型炭材料 | 被引量 : 0次 | 上传用户:w168730018
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
水热炭化是一种类似煤矿化过程将生物质低能耗转化为炭材料的方法,但这种方法得到的水热炭比表面积较低,限制了其直接作为吸附剂在CO2捕集方面的应用.本文以壳聚糖为前体通过水热炭化联合低浓度KOH活化,制备出高比表面积氮掺杂多孔炭材料,采用氮气物理吸附仪、扫描电镜(SEM)和X-射线衍射仪(XRD)研究水热炭化过程中熔融盐和活化温度对多孔炭材料孔结构及其CO2吸附性能的影响.结果表明升高活化温度能够有效增加孔隙率.水热过程中存在的熔融盐在600和700℃活化时会引起比表面积适度降低,这是由于存在的盐可能在水热炭中引入部分介孔结构.低温活化时水热反应中盐的存在可以增加多孔炭材料CO2吸附量.例如700℃活化水热炭化过程中不含盐样品AC-0-700和含盐样品AC-5-700在常温常压下的CO2吸附量分别为2.97和3.45 mmol/g,这一结论证实比表面积并非影响常压下多孔炭材料中CO2吸附量的唯一因素.水热反应中盐的存在能够有效固定水热炭中的氮元素减少其活化时的挥发程度.另外,虽然600℃活化样品AC-5-600的比表面积仅为1249 m2/g,但其常温常压下的CO2吸附量高达4.41 mmol/g,主要归因于高微孔率和适度氮掺杂的联合效应.“,”Hydrothermal treatment of biomass is effective in producing hydrochar, but the product usually has a low surface area and is not suitable for direct use as an adsorbent for CO2 capture. We report the use of chitosan as a precursor for carbon prepared by a combination of hydrothermal treatment and mild KOH activation. The effect of an additive salt (eutectic salt of KCl/LiCl with a mass ratio of 5.5/4.5) in the hydrothermal treatment and activation temperature on the porosities and surface chemical states of the obtained carbons and their CO2 capture were studied by N2 adsorption, XPS, SEM and XRD. Results indicated that the porosities of the carbons were increased by increasing the activation temperature. The salt additive introduced mesopores in the hydrochar and slightly reduced the surface area of the porous carbon after activation, but was useful in increasing the number of N-species during hydrothermal treatment and activation. The carbons produced using the salt additive had much larger CO2 uptakes under ambient conditions than those prepared without the salt, suggesting that porosity is not the only factor that determines the CO2 uptake. The CO2 uptake on the carbon activated by KOH at 600 ℃ produced from the salt-assisted hydrochar was the highest (as high as 4.41 mmol/g) although its surface area was only 1249 m2/g, indicating that CO2 uptake was determined by both the microporosity and the active N-species in the carbon.
其他文献
本文以固原市原州区为例分析了在线课堂建设中模式创新与普及推广所面临的困难,并提出了解决问题的详细对策,以期能够实现教育资源均衡化,促进偏远地区小规模学校的快速发展.
本文通过对2016—2019年国际MOOC文献的系统回顾,利用Citespace软件对国际MOOC研究内容进行可视化分析,将研究前沿归纳为“技术及资源的建设”“学习者特征分析”“MOOC课程优化”和“学习社区的构建”这四个方面.在此基础上对不同时期国际MOOC研究前沿的结论进行了比较,并结合后疫情时代教育新生态的特点展望了国际MOOC研究的趋势.
本文以“现代教育技术”课程为例,结合SPOC开展混合教学,在教学设计阶段合理开发相关教学资源,综合利用SPOC教学视频和网络教学平台开展教学,以期能够有助于提高学生的信息素养,树立师范生的混合学习理念.
石墨、炭纤维、炭/炭复合材料等碳基材料广泛应用在航空航天、能源汽车、化工等领域,但炭材料在高温有氧环境下易氧化和不耐氨气、耐划性能较差等缺点,难以满足人们对炭材料越来越苛刻的使用要求,严重制约其发展和实际应用.碳化钽(TaC)具有优异的高温力学稳定性及高温耐腐蚀、耐烧蚀等优点,并与炭材料具有良好的化学相容性和力学相容性,能够对炭材料有效保护,引起国内外研究人员对TaC涂层改性碳基材料的广泛研究.本文系统介绍了在石墨、炭纤维、炭/炭复合材料3种碳基材料表面制备TaC涂层的研究进展,阐述了化学气相沉积工艺(如
随着电子信息技术的发展,微波在军事和民用领域的应用越来越广泛.相应的电磁辐射污染成为全球关注的问题.为了合成厚度薄、密度低、吸收频带宽和吸收强度高的电磁波吸收材料,研究者们进行了大量的努力.碳基材料由于重量轻、衰减能力强、比表面积大和优异的物理化学稳定性,在电磁波吸收方面表现出巨大的潜力.本文首先介绍了吸波材料的衰减理论和影响吸波性能的因素.接下来,总结了不同维度的纯炭材料(如0维炭球、一维炭纳米管、二维炭片和三维多孔炭)以及由碳和磁性物质、陶瓷、金属硫化物、Mxene以及导电聚合物等异质成分组成的复合材
位错是异质外延单晶金刚石合成过程中的重要线缺陷,而降低位错密度是金刚石在电子器件领域上应用的显著挑战.本文以降低Ir衬底上异质外延金刚石膜中位错密度为目标,首先对该过程中的位错产生、类型、表征等进行阐释,然后从理论与工艺相结合的角度总结了加剧位错反应(增加外延层厚度,偏轴衬底生长)、除去已有位错(横向外延过度生长,悬挂-横向外延生长,图形化形核生长)及其他方法(三维生长法、金属辅助终止法、采用金字塔型衬底法)在降低金刚石位错密度方面的最新进展,随后结合经典的大失配异质外延半导体体系降低位错的理论,提出了衬
以NaCl为模板、结合冷冻干燥技术合成了多孔炭复合V2O3纳米材料,研究其用作锂离子电池负极材料的动力学特征,并与商业化活性炭构建锂离子电容器,测试其电化学性能.结果表明,多孔炭复合V2O3纳米材料具有赝电容行为,所构建的锂离子电容器同时具有高能量、高功率和长效循环稳定性,是一种很有前景的锂离子电容器负极材料.
石墨烯材料由于比表面积大、导电性能好,被作为正极材料与多孔炭材料一起用于锂离子电容器.石墨烯材料在制备和使用过程中易发生片层堆叠积聚,难以保证单层存在.堆叠会影响材料的电子结构进而影响量子电容.为了考察层间相互作用对石墨烯电子结构和量子电容性能的影响规律,基于密度泛函理论计算,本文系统研究了堆叠对于多种缺陷结构石墨烯材料的量子电容、表面电量等性能的影响.计算发现,由于层间相互作用以及基底层提供了部分电荷,单层石墨烯堆叠后量子电容性能增加,并且相较于完整和表面带有点缺陷的石墨烯,掺N双层石墨烯的量子电容提升
以石油沥青为原料,通过空气氧化稳定化及炭化方法成功制备出钠离子电池用硬炭负极材料.研究了不同氧化稳定化温度下样品组成、结构的变化,及其对炭化样品形貌、结构和储钠性能的影响.结果表明,空气氧化处理可以引入大量的含氧官能团,诱导脱氢缩合和氧化交联反应的发生,使石油沥青发生由热塑性向热固性的转化.空气氧化稳定化处理有效地阻碍了沥青在高温炭化中固有的石墨化倾向,使碳层堆叠变得无序、同时产生更多的缺陷位.电化学测试结果表明,在100 mA g?1的电流密度下,与直接炭化样品PDC-1400相比,350℃氧化稳定化、
锂硫电池由于其高能量密度和低廉的价格,将在未来的储能领域得到广泛应用.然而,它面临许多挑战,特别是在硫的负载和可溶性多硫化物的穿梭效应方面.为了解决这些问题,本文设计了一种三维多级孔炭材料(3D-HPC)作为锂硫电池中硫的载体.采用模板法,在去除模板剂聚甲基丙烯酸甲酯和氧化锌后得到了三维多孔结构.电镜和BET测试表明相互连通的大孔道与大量的大尺寸介孔协同构成了三维导电碳网络.三维网络有利于离子和电子的转移,同时通过较大尺寸的孔缓解阴极的体积膨胀,多级孔通过毛细凝结抑制了穿梭效应.电化学测试结果表明,3D-