论文部分内容阅读
用知识的条件粗糙熵定义了特征的相对重要性,提出了一种基于条件粗糙熵的入侵数据特征并行选择算法.算法首先将入侵数据决策表划分成多个子表,然后利用特征的相对重要性对各子表并行求解,最后以子表选出的局部特征为基础求得原决策表的约简.实验表明,该算法适用于大规模的入侵数据集,选出的特征属性不仅可以大大减少数据在存储、分析以及各组件共享中的代价,还能够保持并提高入侵分类的准确性。