论文部分内容阅读
Background We investigated the role in electrical stimulations of paraventricular nucleus (PVN) on gastric mucosal cells and the activity of mitogen-activated protein kinases (MAPKs) family members induced by gastric ischemia-repertusion (Gl-R). And we elucidated the molecular mechanisms of the protection of PVN from GI-R injuries.Methods Sprague-Dawley rats were divided randomly into 4 groups: Group Ⅰ, the sham-operated GI-R control group;Group Ⅱ, the sham-operated electrical stimulations to PVN + sham-operated GI-R control group; Group Ⅲ, the GI-R group; and Group Ⅳ, the electrical stimulations to PVN + GI-R group. In all of the experiments, the PVN was stimulated prior to the induction of GI-R. The GI-R model was established by clamping the celiac artery for 30 minutes to induce ischemia and then was released to allow reperfusion for 30 minutes, 1 hour, 3 hours and 6 hours, respectively. The gastric mucosal cellular apoptosis, proliferation, and the expression and activity of MAPKs protein were observed by immunohistochemistry and West blotting, respectively.Results Compared with the GI-R group, the application of electrical stimulations in the PVN significantly depressed gastric mucosal cellular apoptosis and enhanced gastric mucosal cellular proliferation following the 30-minute, 1-hour and 3-hour intervals of reperfusion; it also promoted the activation of p-ERK during the early phase of reperfusion but inhibited the activation of p-JNK1/2 and p-p38 following the 30-minute, 1-hour and 3-hour intervals of reperfusion.Conclusions The protection of PVN against GI-R injuries may attribute to the inhibition of apoptosis and the promotion of the proliferation of gastric mucosal cells during GI-R. This protective effect is mediated by activating the ERK pathway and depressing the JNK, p38 MAPK pathways of the gastric mucosal cells.