论文部分内容阅读
传统LMS算法的优点是计算简单、易于实现,缺点是收敛速度慢,如果为加快收敛速度而增大步长因子μ,则会导致大的稳态误差,甚至引起算法发散。固定步长因子无法解决收敛速度和稳态误差之间的矛盾。本文通过建立步长因子μ与误差信号之间的非线性函数关系,得出一种新的变步长自适应滤波算法(SVSLMS)。理论分析和计算机仿真结果表明该算法的性能优于传统的LMS算法和NLMS算法。即在计算量增加不多的前提下,能同时获得较快的收敛、跟踪速度和较小的稳态误差。