论文部分内容阅读
针对现有主流的人脸检测算法不具备像素级分割,从而存在人脸特征具有噪声及检测精度不理想的问题,提出了一种基于Mask R-CNN的人脸检测及分割方法。通过ResNet-101结合RPN网络生成候选区域,再利用RoIAlign算法实现像素级的特征点定位,旨在提高定位精度。根据全卷积网络生成相应的人脸二值掩码,实现图像中人脸信息与背景的分割。此外,构建了一个具有分割标注信息的人脸数据集用于训练相应模型。在通用人脸检测数据集的实验结果表明,该方法具有较好的人脸检测效果,并能在准确检测的同时实现像素级的人脸信