论文部分内容阅读
Bimetallic additively manufactured structures (BAMSs) can replace traditionally-fabricated functionally-graded-components through fusion welding processes and can eliminate locally-deteriorated mechanical properties arising from post-processing.The present work fabricates a BAMS by sequentially depositing the austenitic stainless-steel and Inconel625 using a gas-metal-arc-welding (GMAW)-based wire + arc additive manufacturing (WAAM) system.Elemental mapping shows a smooth compositional transition at the interface without any segregation.Both materials being the face-center-cubic (FCC) austenite,the electron backscattered diffraction (EBSD) analysis of the interface shows the smooth and cross-interface-crystallographic growth of long-elongated grains in the direction.The hardness values were within the range of 220-240 HV for both materials without a large deviation at the interface.Due to the controlled thermal history,mechanical testing yielded a consistent result with the ultimate tensile strength and elongation of 600 MPa and 40 %,respectively,with the failure location on the stainless-steel side.This study demonstrates that WAAM has the potential to fabricate BAMS with controlled properties.