论文部分内容阅读
针对目前行为识别方法的不足,提出一种基于人体3D骨架和多CRF模型(MCRF)的行为识别方法.3D骨架数据量少且保留了行为关键信息的优点,并具有融合多特征和上下文信息的优势.为此,首先基于3D骨架将人体动作划分为全局运动、手臂运动和腿部运动,通过对动作序列进行多类特征提取,形成多类特征集;然后利用CRF模型对每一特征集建模,再融合所有的CRF模型,得到MCRF模型;最后利用MCRF模型进行行为识别.实验结果表明,该方法具有较高检测率.