论文部分内容阅读
针对采用传统PID控制一类非线性滞后系统,难以获得满意的控制效果,提出基于RBF神经网络的PID控制参数自整定的方法.利用具有在线能力的最近零聚类学习算法,训练RBF神经网络,从而自适应调整系统的控制参数.仿真结果证明了,该控制策略不仅能使非线性滞后系统具有良好的动态跟踪性能,而且具有很好的抗干扰能力.