论文部分内容阅读
针对传统的蚁群算法设计机器人避障路径规划,自适应能力差,全局优化能力和搜索速度不好的问题,在传统算法的基础上,提出一种采用奖惩规则格栅建模的机器人避障规划算法。提出构建模型主体的行为规则和避障规则,通过在栅格环境中设置量子遗传进化的多个有效的行为规则,设计了信息素更新的奖惩规则,修改其路径上的信息素,改变量子本身携带的信息素,得到优化避障最小距离。最终获得了复杂环境下的最优路径。仿真实验表明采用该算法进行机器人避障路径规划,在未知复杂环境下能够快速地规划出安全的优化路径,机器人避障路径规划具有很好的自适应