论文部分内容阅读
传统的协同过滤算法过于依赖用户之间的评分,容易出现冷启动和数据稀疏性问题,同时推荐结果单一,针对以上问题,本文提出了一种融合信任因子的多样化电影推荐算法.首先对用户相似度计算方法进行改进,引入用户间信任度关系和属性特征信息.接着使用聚类方法把具有相同兴趣的用户划分在同一社群.最后在评分时综合考虑用户活跃度对电影的推荐度,引入惩罚因子,从而为目标用户提供个性化、多样化的电影推荐.实验结果表明,本文提出的算法在推荐精度和多样性指标上均有所提高,有较好的推荐效果.