基于孪生网络的鲁棒红外目标跟踪算法

来源 :计算机应用与软件 | 被引量 : 0次 | 上传用户:jinher123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对红外目标跟踪获得的目标特征鲁棒性差以及模型漂移易导致跟踪失败等问题,提出基于孪生网络的鲁棒红外目标跟踪算法,即利用预训练孪生网络提取红外目标多卷积层特征,以获取红外对象的空间及语义信息.通过相对熵滤波网络进行响应图融合,并以融合后的响应图为基础设计自适应模板的更新策略.在具有挑战性的红外跟踪数据集VOT-TIR2016上进行的实验表明,该算法具有良好的精度和鲁棒性,并能应对目标被遮挡以及目标外观快速变化等挑战.
其他文献
为了提高Stacking集成算法的分类性能,充分利用Stacking学习机制产生的先验信息和贝叶斯网络丰富的概率表达能力,提出一种基于属性值加权朴素贝叶斯算法的Stacking集成分类算法AVWNB-Stacking(Stac-king based Attribute Value Weight Naive Bayes).通过考虑属性值这个深层次的因素,以互信息(Mutual Informa-tion,MI)作为权值度量的基础,对属性权值向量横向扩展为每个属性值分配一个权值,避免不同的属性值共享相同的权值,
密度聚类是数据挖掘和机器学习中最常用的分析方法之一,无须预先指定聚类数目就能够发现非球形聚类簇,但存在无法识别不同密度的相邻聚类簇等问题.采用逆近邻和影响空间的思想,提出一种密度聚类分析算法.利用欧氏距离计算数据对象的K近邻与逆近邻,依据逆近邻识别其核心对象,并确定其核心对象的影响空间;利用逆近邻和影响空间,重新定义密度聚类簇扩展条件,并通过广度优先遍历搜索核心对象的影响空间,形成密度聚类簇,有效解决了无法区分不同密度相邻聚类簇等不足,提高了密度聚类分析效果和效率.基于UCI和人工数据集实验验证了该算法的