论文部分内容阅读
摘 要:物流仿真技术能够有效地改善物流管理课程教学效果,用三维可视化方法建立学生对抽象概念的理解。文章从仿真软件的选择及实际应用的阶段划分论述了仿真在物流教学中的作用与过程,起到了促进教学效果改善、增强学生学习兴趣、强化动手实践能力的效果,值得在当前物流管理教学过程中推广应用。
关键词:物流仿真;课程教学;物流
中图分类号:G642 文献标识码:A
0 引 言
随着社会经济的发展,对物流的需求量越来越大,对人才的需求无论从数量上还是质量上都显得更为迫切。目前国内有200多所高校开设了物流管理相关的专业,近年来也培养了大量的物流专业人才满足市场需求。但是由于物流管理专业开设的历史较短,缺乏完整的理论体系和实践经验,因此大量的物流管理教学依然处于不断探索的阶段。
物流管理课程是一门理论与实践性均较强的专业核心课程,对学生专业知识体系的建立具有重要的框架性作用。在教学过程中首先需要使学生产生学习的兴趣与积极性,其次是将理论能够与实际问题相结合,使学生能够学以致用,增强对专业的价值与意义的认同感。因此在教学过程中需要两方面并重,在理性和感性层面加强学生对物流知识的认识,并能直观地感受到物流系统运行的实际情况,避免空洞的理论讲授使学生感觉过于抽象,难以产生学习的动力[1]。因此在物流管理课程教学中不仅需要知道教什么,更应该掌握如何教的方法,实现从感性认识向着理性分析的层面逐渐深入。一般来说,为了能够更好地实现理论联系实际教学,传统做法为带学生进行认识实习,到周边相关企业去参观并了解物流的设施设备、合理布局等方面的内容,但是受制于学时数、成本、组织难度等方面的考量,这种现场教学方式难以大面积的开展。
为了缓解这一需求和实际困难之间的矛盾,本文尝试利用计算机仿真技术的先进成果,将物流系统的运行过程以及实际运行的状态以动态三维可视化的方式向学生展示,并可由学生自己动手参与,通过自行动手调整设备以及参数,观察和研究其中所发生的变化,从而更好地理解物流系统优化的含义以及方法,这对于讲授物流系统组成以及系统优化均具有极强的现实意义,能够有效地调动学生参与的积极性,将灌输式学习向着探讨式与研究式学习的方向发展。这一方法在笔者的课堂教学中嵌入,取得了良好的教学效果,值得在物流管理课程教学中推广与应用。
1 仿真理论与工具分析
仿真理论认为,通过对现实环境的模拟,能够在可控的条件下抽取主要影响系统的要素,使其在接近实境条件下展现系统的功能。仿真最初是从流程仿真开始,逐渐进入二维仿真、三维仿真以及更为接近实境的体感仿真。这一演化过程可以让教学、培训等工作更易于组织,实现成本也更低。例如在美国对伊拉克的沙漠风暴作战中,美国士兵基本上是未曾经历过任何实战的新手,但是却轻易地战胜了伊拉克的有着丰富实战经验的精锐部队。这一战争结果并不意外,因为美军士兵已经在本土进行过多次沙漠作战的仿真演练,而美军认为,这一场实战并不比仿真演习中的场景更困难[2]。这从一个侧面说明了仿真系统的价值和重要性。
随着当代越来越多的系统操作都是通过计算机进行的,操作者也只能通过计算机屏幕上的反馈得知真实系统的运行状况。那么如果仿真系统足够逼真,操作者在采用仿真训练和真实训练并没有太大的不同,但是其成本和效率将发生较大变化,训练者可以轻易地调整一些现实中无法便捷调整的参数,并观察和体验其结果的不同,因此仿真这一方法成为系统开发与人员技能培训等领域不可或缺的重要工具,其价值表现得也越来越明显。
物流仿真作为一个新兴仿真领域,与工业仿真一样得到了较多的关注,当前市场上能够见到的仿真软件主要有以下几类:
(1)流程性系统动力学仿真
这一类工具主要研究系统中的存量与流量的因果关系,其建模过程较为抽象,主要可用于物流系统中库存量决策等问题。
(2)二维平面仿真
此类工具将上一类仿真模型中的流程转化为了二维实体对象,通过设定对象之间的连接逻辑以及对象属性,建立了一个实体物流系统的映射关系,并通过加速系统的运行时间,能够在较短时间内对系统进行仿真模拟,并得到系统分析结果。
(3)三维仿真系统
这是当前业界的热点,这一类仿真软件基于第二类软件基础上进行实体对象的三维模块化,并将物流系统中的各项作业流程采用实时动画的形式加以展现,能够以较为直观的方式展现物流系统的运行,分析其运行结果。
(4)体感仿真
这是下一代的仿真技术的发展方向。体感技术以及虚拟现实技术的不断发展,已经形成了大量可以真实“感触”的虚拟实体,而不是在计算机前用鼠标进行的操作,实验者可以利用体感手套以及VR眼镜操作虚拟环境中的设备与对象,并身临其境地感受到系统的各种状态。这需要软件与硬件系统的整合,当前硬件平台已经较为成熟,而软件方面尚且欠缺,系统的整合仍需要经历一个发展的阶段。但不可否认,这将是未来最有前景的一种仿真形式。
2 物流管理仿真软件选择的基本原则
在物流管理课程教学中引入仿真系统,既需要考虑技术的先进性,同时也要考虑到易用性、成本、适用面等方面因素的影响。为此,经过笔者的实际教学经验总结得出,在软件选择上应把握如下四个方面的原则:
(1)易学易用性
这是一个必要的条件,如果软件复杂度很高,学习起来将花费大量的时间和精力,以及需要较多的编程和其他背景知识的话,会带来较高的技术门槛,将仿真教学变成一个“不可能完成的任务”,这是尤其需要注意的地方,如果从一开始学生就无法对其产生兴趣的话,即便后期能够产生更好的效果,也只是一种空谈而已。因此需要仿真系统强化人机界面,采取搭积木的方式将所需要的对象“拖拽”到工作空间中,并直观地在各个对象间建立逻辑关系,这样的系统才能够使学生迅速入门。 (2)模块标准化
在物流系统中同一类设备往往有各种不同的型号。但是在仿真过程中不需要如此多的不同设备,而只需要将设备的共性部分加以呈现,对主要的功能输出加以描述。例如在实际中叉车有内燃机式和电瓶式之分,每一类下又有更多的指标参数。但是在仿真中并不关注这些差异,而只关注叉车的行驶速度、抬升高度、最大载重负荷等与性能相关的参数,这样就能够有更好的大局观视角,将精力集中于系统的仿真,而不是设备。
(3)接口开放性
仿真系统需要能够适用于多种不同的实际环境,例如在设备的三维模型中或者物流设施的平面布置中,三维仿真系统可能并不擅长于具体设备的建模或者平面布局,但是可以方便地从外部系统中导入AUTOCAD、3DMAX等专门化软件所形成的布局或者对象,便于协作与共享。
(4)可控制性
在仿真系统中,可对于任意实体对象有更多的参数控制,可根据自己的需求任意修改其中的一部分参数,这可以满足一些高端用户对仿真系统的要求,具有更强的仿真能力。
3 物流管理课程仿真教学应用阶段
在物流课程中引入仿真,可分为如下几个阶段:
(1)三维实体设备的仿真
在物流课程中讲授不同物流设备及其应用,传统上介绍设备的功能、参数,以及图片视频等,但是学生并无对设备的直观印象。运输车辆这些常见设备还能够从日常生活中感知得到,但是对于AGV、ASRS等平时看不到的设备,则缺乏一个清晰的认识。通过三维矢量建模,将设备的三维模型根据实体尺寸进行再现,学生可以通过在计算机上用鼠标查看设备的各个不同细节,对其尺寸、部件功能等都能有更清晰的认识,同时矢量模型还可以支持无损缩放,因此,可将设备的细节进行放大,进行详细的介绍和描述。这使学生在了解设备的时候有了更多的可参与性,效果较好。
(2)物流设备在系统中作用分析
物流系统中的设备需要通过链接来形成一个整体需要说明设备在物流系统中的作用,那么需要将设备嵌入在一个真实的场景中,让其工作,表现出设备的功能特征。例如,在一个典型的物流仓库中,由货架、叉车等设备组成了一个仓储系统,那么在给定了输入输出接口的时候,货物的流动构成系统的主要功能,因此可以通过建模将此过程描述出来,如何接货、叉车设备如何实现托盘上架、如何出货等过程均可实现三维动画方式表达,使学生能够了解设备在系统中的作用。
(3)模块化仿真系统运行与优化
作为物流管理,更多地是需要学生在了解系统作用的前提下进行如何才能更好地实现管理这一目标,所谓管理,即在资源受限的条件下实现系统效率的最大化,避免闲置、浪费以及资源配置不足等不经济现象。例如在上一步完成的条件下,对系统中货物的到达进行描述,可以给定一个真实的货物到达时间数量表,或者按照一定的概率分布给定货物到达,在系统中给出货架的存放最大容量,叉车设备的作业时间等参数,那么通过让系统在计算机中快速运行,并得出系统的使用率,使学生对系统瓶颈、优化等概念有更深入的理解。例如,在暂存区货物出现了大量的堆积,而货架利用率尚且不足,叉车却是满负荷工作,此时,学生便易于找到系统的瓶颈,并且尝试着提出采取什么样的方案才能够更好地解决这一问题。这使得学生在学习过程中有了更强地参与和动手的积极性。
(4)模块整合,综合研究
将各个独立的物流系统模块进行整合,从而掌握更为复杂的大系统运行的仿真模拟,对物流有更为成熟的大系统观。物流课程的讲授一般是从系统的七大功能要素展开的,并最终要对其各个功能模块有综合性、整体性的认识,因此,给出各个子系统的接口,并将子系统定义为若干个子模块,这样可以方便地形成一个可运行的大系统,分析各个子系统模块之间的关系,并实现物流效率的提升。在教学过程中加入了这些仿真的手段,使学生能够实现“做中学”,使其产生学习的动力和兴趣,极大地提高了教学的效果。
4 结 论
通过在物流管理教学过程中引入仿真软件Flexsim,极大提升了学生的学习热情,通过布置实际问题的形式,鼓励学生主动地寻找问题答案,学生能够在课后自觉地进行学习和研究,并开始对优化的概念进行思考,在尝试解决系统瓶颈问题时,开始由问题驱动学习理论方法,对课本上所描述的大量抽象概念有了更为清晰的认识。并且通过这一工具的掌握,为后续的运输与配送管理、仓储管理以及物流系统规划等课程的深入学习奠定了坚实的基础,有助于学生将前后所学的内容进行贯通,逐步提高解决更为复杂的物流问题的能力,起到了比参加企业认识实习更好的效果。在教学实际运用过程中,需要能够将企业的真实场景和问题引入到三维建模过程中来,而不仅仅采用一个假设的场景,这样更易于使学生理解物流系统仿真的价值所在。
参考文献:
[1] 黄颖,王勉. 基于案例难度矩阵的物流管理课程案例教学方法研究[J]. 价值工程,2010,29(35):192-193.
[2] 凯文·凯利. 技术元素[M]. 北京:电子工业出版社,2012.
关键词:物流仿真;课程教学;物流
中图分类号:G642 文献标识码:A
0 引 言
随着社会经济的发展,对物流的需求量越来越大,对人才的需求无论从数量上还是质量上都显得更为迫切。目前国内有200多所高校开设了物流管理相关的专业,近年来也培养了大量的物流专业人才满足市场需求。但是由于物流管理专业开设的历史较短,缺乏完整的理论体系和实践经验,因此大量的物流管理教学依然处于不断探索的阶段。
物流管理课程是一门理论与实践性均较强的专业核心课程,对学生专业知识体系的建立具有重要的框架性作用。在教学过程中首先需要使学生产生学习的兴趣与积极性,其次是将理论能够与实际问题相结合,使学生能够学以致用,增强对专业的价值与意义的认同感。因此在教学过程中需要两方面并重,在理性和感性层面加强学生对物流知识的认识,并能直观地感受到物流系统运行的实际情况,避免空洞的理论讲授使学生感觉过于抽象,难以产生学习的动力[1]。因此在物流管理课程教学中不仅需要知道教什么,更应该掌握如何教的方法,实现从感性认识向着理性分析的层面逐渐深入。一般来说,为了能够更好地实现理论联系实际教学,传统做法为带学生进行认识实习,到周边相关企业去参观并了解物流的设施设备、合理布局等方面的内容,但是受制于学时数、成本、组织难度等方面的考量,这种现场教学方式难以大面积的开展。
为了缓解这一需求和实际困难之间的矛盾,本文尝试利用计算机仿真技术的先进成果,将物流系统的运行过程以及实际运行的状态以动态三维可视化的方式向学生展示,并可由学生自己动手参与,通过自行动手调整设备以及参数,观察和研究其中所发生的变化,从而更好地理解物流系统优化的含义以及方法,这对于讲授物流系统组成以及系统优化均具有极强的现实意义,能够有效地调动学生参与的积极性,将灌输式学习向着探讨式与研究式学习的方向发展。这一方法在笔者的课堂教学中嵌入,取得了良好的教学效果,值得在物流管理课程教学中推广与应用。
1 仿真理论与工具分析
仿真理论认为,通过对现实环境的模拟,能够在可控的条件下抽取主要影响系统的要素,使其在接近实境条件下展现系统的功能。仿真最初是从流程仿真开始,逐渐进入二维仿真、三维仿真以及更为接近实境的体感仿真。这一演化过程可以让教学、培训等工作更易于组织,实现成本也更低。例如在美国对伊拉克的沙漠风暴作战中,美国士兵基本上是未曾经历过任何实战的新手,但是却轻易地战胜了伊拉克的有着丰富实战经验的精锐部队。这一战争结果并不意外,因为美军士兵已经在本土进行过多次沙漠作战的仿真演练,而美军认为,这一场实战并不比仿真演习中的场景更困难[2]。这从一个侧面说明了仿真系统的价值和重要性。
随着当代越来越多的系统操作都是通过计算机进行的,操作者也只能通过计算机屏幕上的反馈得知真实系统的运行状况。那么如果仿真系统足够逼真,操作者在采用仿真训练和真实训练并没有太大的不同,但是其成本和效率将发生较大变化,训练者可以轻易地调整一些现实中无法便捷调整的参数,并观察和体验其结果的不同,因此仿真这一方法成为系统开发与人员技能培训等领域不可或缺的重要工具,其价值表现得也越来越明显。
物流仿真作为一个新兴仿真领域,与工业仿真一样得到了较多的关注,当前市场上能够见到的仿真软件主要有以下几类:
(1)流程性系统动力学仿真
这一类工具主要研究系统中的存量与流量的因果关系,其建模过程较为抽象,主要可用于物流系统中库存量决策等问题。
(2)二维平面仿真
此类工具将上一类仿真模型中的流程转化为了二维实体对象,通过设定对象之间的连接逻辑以及对象属性,建立了一个实体物流系统的映射关系,并通过加速系统的运行时间,能够在较短时间内对系统进行仿真模拟,并得到系统分析结果。
(3)三维仿真系统
这是当前业界的热点,这一类仿真软件基于第二类软件基础上进行实体对象的三维模块化,并将物流系统中的各项作业流程采用实时动画的形式加以展现,能够以较为直观的方式展现物流系统的运行,分析其运行结果。
(4)体感仿真
这是下一代的仿真技术的发展方向。体感技术以及虚拟现实技术的不断发展,已经形成了大量可以真实“感触”的虚拟实体,而不是在计算机前用鼠标进行的操作,实验者可以利用体感手套以及VR眼镜操作虚拟环境中的设备与对象,并身临其境地感受到系统的各种状态。这需要软件与硬件系统的整合,当前硬件平台已经较为成熟,而软件方面尚且欠缺,系统的整合仍需要经历一个发展的阶段。但不可否认,这将是未来最有前景的一种仿真形式。
2 物流管理仿真软件选择的基本原则
在物流管理课程教学中引入仿真系统,既需要考虑技术的先进性,同时也要考虑到易用性、成本、适用面等方面因素的影响。为此,经过笔者的实际教学经验总结得出,在软件选择上应把握如下四个方面的原则:
(1)易学易用性
这是一个必要的条件,如果软件复杂度很高,学习起来将花费大量的时间和精力,以及需要较多的编程和其他背景知识的话,会带来较高的技术门槛,将仿真教学变成一个“不可能完成的任务”,这是尤其需要注意的地方,如果从一开始学生就无法对其产生兴趣的话,即便后期能够产生更好的效果,也只是一种空谈而已。因此需要仿真系统强化人机界面,采取搭积木的方式将所需要的对象“拖拽”到工作空间中,并直观地在各个对象间建立逻辑关系,这样的系统才能够使学生迅速入门。 (2)模块标准化
在物流系统中同一类设备往往有各种不同的型号。但是在仿真过程中不需要如此多的不同设备,而只需要将设备的共性部分加以呈现,对主要的功能输出加以描述。例如在实际中叉车有内燃机式和电瓶式之分,每一类下又有更多的指标参数。但是在仿真中并不关注这些差异,而只关注叉车的行驶速度、抬升高度、最大载重负荷等与性能相关的参数,这样就能够有更好的大局观视角,将精力集中于系统的仿真,而不是设备。
(3)接口开放性
仿真系统需要能够适用于多种不同的实际环境,例如在设备的三维模型中或者物流设施的平面布置中,三维仿真系统可能并不擅长于具体设备的建模或者平面布局,但是可以方便地从外部系统中导入AUTOCAD、3DMAX等专门化软件所形成的布局或者对象,便于协作与共享。
(4)可控制性
在仿真系统中,可对于任意实体对象有更多的参数控制,可根据自己的需求任意修改其中的一部分参数,这可以满足一些高端用户对仿真系统的要求,具有更强的仿真能力。
3 物流管理课程仿真教学应用阶段
在物流课程中引入仿真,可分为如下几个阶段:
(1)三维实体设备的仿真
在物流课程中讲授不同物流设备及其应用,传统上介绍设备的功能、参数,以及图片视频等,但是学生并无对设备的直观印象。运输车辆这些常见设备还能够从日常生活中感知得到,但是对于AGV、ASRS等平时看不到的设备,则缺乏一个清晰的认识。通过三维矢量建模,将设备的三维模型根据实体尺寸进行再现,学生可以通过在计算机上用鼠标查看设备的各个不同细节,对其尺寸、部件功能等都能有更清晰的认识,同时矢量模型还可以支持无损缩放,因此,可将设备的细节进行放大,进行详细的介绍和描述。这使学生在了解设备的时候有了更多的可参与性,效果较好。
(2)物流设备在系统中作用分析
物流系统中的设备需要通过链接来形成一个整体需要说明设备在物流系统中的作用,那么需要将设备嵌入在一个真实的场景中,让其工作,表现出设备的功能特征。例如,在一个典型的物流仓库中,由货架、叉车等设备组成了一个仓储系统,那么在给定了输入输出接口的时候,货物的流动构成系统的主要功能,因此可以通过建模将此过程描述出来,如何接货、叉车设备如何实现托盘上架、如何出货等过程均可实现三维动画方式表达,使学生能够了解设备在系统中的作用。
(3)模块化仿真系统运行与优化
作为物流管理,更多地是需要学生在了解系统作用的前提下进行如何才能更好地实现管理这一目标,所谓管理,即在资源受限的条件下实现系统效率的最大化,避免闲置、浪费以及资源配置不足等不经济现象。例如在上一步完成的条件下,对系统中货物的到达进行描述,可以给定一个真实的货物到达时间数量表,或者按照一定的概率分布给定货物到达,在系统中给出货架的存放最大容量,叉车设备的作业时间等参数,那么通过让系统在计算机中快速运行,并得出系统的使用率,使学生对系统瓶颈、优化等概念有更深入的理解。例如,在暂存区货物出现了大量的堆积,而货架利用率尚且不足,叉车却是满负荷工作,此时,学生便易于找到系统的瓶颈,并且尝试着提出采取什么样的方案才能够更好地解决这一问题。这使得学生在学习过程中有了更强地参与和动手的积极性。
(4)模块整合,综合研究
将各个独立的物流系统模块进行整合,从而掌握更为复杂的大系统运行的仿真模拟,对物流有更为成熟的大系统观。物流课程的讲授一般是从系统的七大功能要素展开的,并最终要对其各个功能模块有综合性、整体性的认识,因此,给出各个子系统的接口,并将子系统定义为若干个子模块,这样可以方便地形成一个可运行的大系统,分析各个子系统模块之间的关系,并实现物流效率的提升。在教学过程中加入了这些仿真的手段,使学生能够实现“做中学”,使其产生学习的动力和兴趣,极大地提高了教学的效果。
4 结 论
通过在物流管理教学过程中引入仿真软件Flexsim,极大提升了学生的学习热情,通过布置实际问题的形式,鼓励学生主动地寻找问题答案,学生能够在课后自觉地进行学习和研究,并开始对优化的概念进行思考,在尝试解决系统瓶颈问题时,开始由问题驱动学习理论方法,对课本上所描述的大量抽象概念有了更为清晰的认识。并且通过这一工具的掌握,为后续的运输与配送管理、仓储管理以及物流系统规划等课程的深入学习奠定了坚实的基础,有助于学生将前后所学的内容进行贯通,逐步提高解决更为复杂的物流问题的能力,起到了比参加企业认识实习更好的效果。在教学实际运用过程中,需要能够将企业的真实场景和问题引入到三维建模过程中来,而不仅仅采用一个假设的场景,这样更易于使学生理解物流系统仿真的价值所在。
参考文献:
[1] 黄颖,王勉. 基于案例难度矩阵的物流管理课程案例教学方法研究[J]. 价值工程,2010,29(35):192-193.
[2] 凯文·凯利. 技术元素[M]. 北京:电子工业出版社,2012.