论文部分内容阅读
基于支持向量的本质和并行计算方法,提出了一种新的分层并行的机器学习方法以加速支持向量机的训练过程.该方法首先按照分而治之的思想将原分类问题分成若干子问题,然后将支持向量机的训练过程分解成级联的两个层次,在每层采用并行的方法训练各个子支持向量机.各层训练集中的非支持向量被逐步筛选掉,交叉合并的规则保证问题的一致性.仿真结果表明该方法在保证分类器推广能力的同时,缩短了训练支持向量机的时间.