论文部分内容阅读
基于LandsatTM影像和DEM数据,尝试利用BP神经网络建立旺业甸林场森林生物量非线性遥感模型系统,通过实验筛选,最终利用增强型的BP网络进行训练仿真。模型仿真结果表明,增强型的BP神经网络具有自学习和自适应功能强、收敛速度快的特点,能够最大限度地利用先验样本。仿真检验结果的相对系数达0.8022,平均相对误差为15.7%,表明该模型预测的生物量与实际生物量一致性较好,能够达到较好的反演效果。