论文部分内容阅读
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels. As a sort of effective desufurizer, such as Fe2O3, ZnO and ZnFe2O4, it will endure strong reducing atmosphere in desulfurization process. The reduced degree of desufurizer can have an effect on its desulfurization reactivity. In this paper, Fe2O3, ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH. After aging, washing and drying, the solids were calcined at 800 °C. The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR). It is found that there are two reduction peaks for Fe2O3 in TPR, and whereas no reduction peaks for ZnO are found. The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3. ZnFe2O4 is easier to be reduced than Fe2O3. The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods.
Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable, desulfurization sorbents capable of removing hydrogen sulfide from coal gasifier gas to very low levels. As a sort of effective desufurizer, such as Fe2O3, ZnO and ZnFe2O4, it will endure strong reducing atmosphere in desulfurization process. The reduced degree of desufurizer can have an effect on its desulfurization reactivity. In this paper, Fe2O3, ZnO and ZnFe2O4 were synthesized by precipitation or co-precipitation at constant pH. After aging, washing and drying, the solids were calcined at 800 ° C. The reduction behaviors of sample were characterized by temperature-programmed reduction (TPR). It is found that there are two reduction peaks for Fe2O3 in TPR, and with no reduction peaks for ZnO are found. The reduction process of ZnFe2O4 prepared by co-precipitation is different from that of Fe2O3. ZnFe2O4 is easier to be reduced than Fe2O3. The activation energy of reduction process for Fe2O3 and ZnFe2O4 is obtained at different reduction periods.