论文部分内容阅读
The development of advanced transition metal/nitrogen/carbon-based (M/N/C) catalysts with high activity and extended durability for oxygen reduction reaction (ORR) is critical for platinum-group-metal (PGM) free fuel cells but still remains great challenging.In this review,we summarize the recent progress in two typical M/N/C catalysts (atomically dispersed metalnitrogen-carbon (M-N-C) catalysts and carbon-supported metal nanoparticles with N-doped carbon shells (M@NC)) with an emphasis on their potential applications in fuel cells.Starting with understanding the active sites in these two types of catalysts,the representative innovative strategies for enhancing their intrinsic activity and increasing the density of these sites are systematically introduced.The synergistic effects of M-N-C and M@NC are subsequently discussed for those M/N/C catalysts combining both of them.To translate the material-level catalyst performance into high-performance devices,we also include the recent progress in engineering the porous structure and durability of M/N/C catalysts towards efficient performance in fuel cell devices.From the viewpoint of industrial applications,the scale-up cost-effective synthesis of M/N/C catalysts has been lastly briefed.With this knowledge,the challenges and perspectives in designing advanced M/N/C catalysts for potential PGM-free fuel cells are proposed.