论文部分内容阅读
针对大量连续属性值的数据挖掘,提出了一种基于模糊工具箱和ROSETTA软件的粗糙集数据挖掘方法.在粗糙集理论的基础上,应用模糊工具箱中的模糊聚类方法离散分类连续属性值,并将其转化为粗糙集易于处理的知识表格.应用粗糙集数据挖掘软件ROSETTA对这些知识表格进行知识约简处理.通过约简知识属性和属性值,得到连续属性值的核心知识规则,并以实测数据为例,说明了该方法的实现过程和有效性.