论文部分内容阅读
Mining activities have created great wealth, but they have also discharged large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe–mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities.
Mining activities have created great wealth, but they have also selected large quantities of tailings. As an important source of heavy metal contamination, sulfide tailings are usually disposed of in open-air impoundments and thus are exposed to microbial oxidation. Microbial activities greatly enhance sulfide oxidation and result in the release of heavy metals and the precipitation of iron (oxy) hydroxides and sulfates. These secondary minerals in turn influence the mobility of dissolved metals and play important roles in the natural attenuation of heavy metals. Elucidating the microbe-mineral interactions in tailings will improve our understanding of the environmental consequence of mining activities.