论文部分内容阅读
阀控铅酸蓄电池的老化机理复杂,劣化程度受多种因素影响,因此较难预测。在分析影响蓄电池劣化程度的多种因素的基础上,采用Elman神经网络方法对电池劣化程度预测建立模型,并通过遗传算法对预测模型中的初始权值和阈值进行优化,根据浅度放电的测量数据进行劣化程度的预测。仿真结果表明:该模型达到了对电池劣化程度准确预测的目的,通过与实测数据的对比,证明该模型具有较高的有效性。