Binary Darboux transformation and multi-dark solitons for a higher-order nonlinear Schr?dinger equat

来源 :理论物理通讯(英文版) | 被引量 : 0次 | 上传用户:zhengzhidelang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Dark solitons in the inhomogeneous optical fiber are studied in this manuscript via a higher-order nonlinear Schr?dinger equation, since dark solitons can be applied in waveguide optics as dynamic switches and junctions or optical logic devices. Based on the Lax pair, the binary Darboux transformation is constructed under certain constraints, thus the multi-dark soliton solutions are presented. Soliton propagation and collision are graphically discussed with the group-velocity dispersion, third- and fourth-order dispersions, which can affect the solitons'velocities but have no effect on the shapes. Elastic collisions between the two dark solitons and among the three dark solitons are displayed, while the elasticity cannot be influenced by the above three coefficients.
其他文献
  A Bang-Bang optimal control model is considered for a multi-stage uncertain system which is disturbed by an uncertain variable at every stage.Based on Bellm
会议
王剑兰出生于万木竞秀的小兴安岭,小小年纪就执起丹青之笔的她,喜欢率性面画——虽说画法不那么中规中矩,却让她保留了充分的个性发展空间。她的画,质朴中透露着典雅,气势磅
《十善福白史册》(Arban buyantu nom-un Carn Tuke),简称《白史》,是我国元代蒙文古典文献。据校注者考证,为元世祖忽必烈编著。《白史》手稿最早由呼图克图彻辰鸿台吉(一五四○年——一五八六年,《蒙古源流》作者萨囊彻辰之曾祖)发现于松州城(今昭乌达盟赤峰西南),可惜今已失传。现有彻辰鸿台吉根据忽必烈时代的《白史》及畏兀儿人毕罗纳喜里的早期抄本校勘编成的手抄本。一九五八年
二叠系Khuff组是中东地区最主要的天然气产层。阿联酋自20世纪70年代开展Khuff组勘探以来,发现了多个构造圈闭,但钻探测试效果不佳,陆上圈闭测试均为干层,海上圈闭测试气藏规
It has still been difficult to solve nonlinear evolution equations analytically.In this paper,we present a deep learning method for recovering the intrinsic non
问你一句,知道什么叫 Townhouse 吗?如果你听到问话三秒钟后.还在思考什么汤耗子汤勺子,那你可真有点跟不上如今的房产排行榜了,除了排名第一的 CBD 接下来不就该这位 Townh
本文介绍了振动函数与函数的振动熵.着重点讲述函数振动理论在股票市场博取价差研究中的应用为例。在封闭的股票市场的博弈系统中有参与者以全智能对策作为行动,该博弈系统特
  In many cases, human uncertainty and objective randomness simultaneously appear in a system.In order to describe this phenomena, this paper presents a new c
会议
In our previous work (Meng et al 2020 Phys.Rev.A 101 023838),we discover the phenomenon that the quantum entanglement on the driving threshold line remains a co
研究了一类模糊逻辑代数系统-偏序集上关联s代数,给出了偏序集上关联s代数一系列基本性质, 证明了偏序集上关联s代数关于其上的偏序关系≤构成格.最后,给出了偏序集上关联s代
会议