基于EEMD与Elman网络的灌区地下水埋深预测模型

来源 :节水灌溉 | 被引量 : 0次 | 上传用户:hrmcttkl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
地下水埋深预测对于灌区农业生产、水土资源合理利用和生态环境保护等具有重要指导价值与作用。地下水埋深是一个受多种因素影响的多层次复杂系统,其演变具有不确定性、随机性、模糊性和非平稳性。基于EEMD较强的处理非线性问题能力和Elman网络具有适应时变和动态记忆的优点,构建了基于EEMD与Elman神经网络的地下水预测耦合模型,并将其应用于人民胜利渠灌区地下水埋深预测中。研究结果表明:基于EEMD和Elman神经网络耦合模型预测结果的最大相对误差为2.91%,最小相对误差为0.04%,预测合格率为100%,该耦合模型对人民胜利渠灌区地下水埋深的预测精度要高于单一的Elman模型和BP模型。另外,该模型在某种程度上可揭示灌区地下水时间序列的演变机制与影响因素,且计算简单、思路清晰,为地下水埋深预测提供了一种新的途径。
其他文献
回 回 产卜爹仇贱回——回 日E回。”。回祖 一回“。回干 肉果幻中 N_。NH lP7-ewwe--一”$ MN。W;- __._——————》 砧叫]们羽 制作:陈恬’#陈川个美食 Back to yield
为了探究不同残膜量对河套灌区春玉米株高、叶面积、产量及土壤水分的影响,试验共设置4个残膜量处理,分别为0kg/hm2(CK)、67.5kg/hm2(A)、135kg/hm2(B)和270kg/hm2(C)。结果表明:随残
采用反向传播人工神经网络(BP-ANN)逼近气象因子-参考作物腾发量ET0函数关系,以天气预报中的最高和最低气温为输入进行短期ET0预报。收集了南京站实测的2010年7月1日至2013年7