论文部分内容阅读
【摘要】在初中数学教学过程中,数学思想与数学方法始终贯穿其中,数学知识通过文字的形式在教材中呈现,但是数学思想方法却隐藏在知识点的不同方面。在深化教学改革的背景之下,学生的学科核心素养培养被高度重视,如何在教学各个环节融入思想与方法,提升学生的解题技巧和数学能力成为了关键内容。有鉴于此,本文首先对初中数学教学的主要思想方法进行了统计,以此为基础分析如何让思想进行良好渗透。
【关键词】初中数学 数学思想 数学方法
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2020)50-0059-02
引言
“核心素养”的关键要素包括对数据的分析应用能力、建模运算能力和抽象逻辑分析能力等,还需要将数学思想方法融入教学环节之中。在现有的纵向设计模式的初中教材当中,所对应的思想方法也应该聚焦在重点和难点,目的在于让学生养成良好的逻辑思维,形成数学习惯。
一、初中数学教学中常见的数学思想方法
(一)分类讨论
分类讨论的核心要素在于对差异性进行准确评估,并以相同点作为切入点。对于不同的研究对象,我们可以考虑采用不同的逻辑方法进行分类讨论,以差异性和共同点为参考标准作为评估标准。通常情况下分类讨论会涉及到母项和子项的分析,前者指的是研究对象本身,后者指的是划分之后的概念与结果,两者之间通过相应的判定依据并借助分类讨论的思想理念之后可以让学习内容目标明确,为问题的研究和解决寻找解决的条件。例如,在绝对值的掌握过程中,如果我们将实数的学习过程划分为三个阶段——正数学习、负数学习和“零”知识的学习,一方面能够让学生快速理解和深化知识,另一方面能够培养思维意识。
(二)符号化思想
符号化思想是在问题解决的过程当中,将数学问题转化为符号问题,然后再进行问题的研究分析。在代数计算过程中,符号化思想的应用非常广泛,通常我们会将未知数表示为字母,在几何中使用表格、线段等符号,将复杂的文字内容进一步简化,让学生能够形成对知识的理解,比如在勾股定理的学习环节就可以以“三角形”作为研究符号,使用a2+b2=c2的代数式就可以进行符号化表示,充分结合问题的条件与表达结果,即便是某些复杂问题也能进行总结和概括。
(三)数形结合
数形结合的思想是最常见且最普遍的数学思想方法,利用图形的位置关系为依据,将与之相对应的数量关系式进行结合,两者看上去并未存在必要联系。但是,如果以某些相关条件为支撑就能够实现相互转化的过程。在图形计算等计算过程中可以实现数形结合,将两者的优势充分展示并发挥,一方面强化了学生的记忆认知,另一方面促进学生的思维创造。
解析:在该题目中,看似函数问题可以通过数形结合的方式将其转换至坐标轴中进行解决,为此,可以对题干中的公式进行如下转化:
(四)函数与方程
函数与方程思想在数学学科中起到基础性作用,利用变量之间的等量关系来进行分析,如方程、方程组等,都是以动态为依托进行静态问题的求解,重点对等量关系展开分析讨论。通常情况下,函数与方程都是以强化问题的理解为基础,将问题总结为几个不同方面,实现方程组、平面坐标系的建构等。思想方法的应用过程中,从本质上基于数学概念进行了解释,目的在于帮助和引导学生在分析和解决问题的过程中形成数学观点。
二、初中数学教学中数学思想方法渗透的方式
(一)重视数学知识的生成
数学本身具有抽象性的特点,其逻辑性要求比较高,学生在学习的环节要注意对某些概念形成自我意识,才能形成对知识的正确理解和掌握,特别是如何利用关键的数学思想与方法进行知识转变与联动。且需要基于學生的先验知识与实践基础之上,强调学生在知识学习中的思考与研究。例如,在《圆与圆的位置关系》的知识学习过程中,教师可以让学生理解知识转化的过程,将数学概念转化为“两个圆的圆心距与两个圆半径关系的对比”,从而实现内容的概括;在《函数最小值和最大值》的知识学习中,可以借助函数图像与数形结合的思想方法来求极值。诸如此类的知识教学过程都高度重视数学基础知识的学习过程,借助不同的数学思想方法来纳入知识结构,从概括知识的高度上升到归纳提炼的高度,强化学生的数学意识和数学能力发展,提升学生学习的主动性和积极性。
(二)实践过程中的思想方法应用
数学本身是一项抽象性突出的学科,不仅要关注学生获取知识的过程,还要关注思维创新的过程,尤其是对于问题的提出和分析能力,在问题解决方面取得进步。例如,在数列知识的求解过程中,学生往往会觉得难度较大,寻找不到正确的学习方法,但是利用数形结合思想就可以将问题变得更加简单。举例来说,1/2+1/22+1/23+…+1/2n的计算过程中,教师可以利用多媒体设备演示,将一个正方形一直进行对半划分。如果正方形的边长设为1,则面积就是1/2,正方形的一半,之后的计算结果分别是正方形面积的1/4,以此类推得到最终结果。在教学过程中,教师应该注重对教学过程的反思,寻找出其中存在的问题和不足,必要时可以将某些重点与难点的特殊性问题转化为一般性问题,让学生具备特殊性问题的分析解决能力。
(三)知识点归纳过程中的思想方法提炼
知识点归纳一般以每个单元的复习和总复习为主,而即便是同一种数学思想方法也可以在不同的知识点学习中发挥作用。教师的工作就是将隐藏在知识结构之后的思想方法进行总结,便于学生进行理解和掌握,学会知识的融会贯通。在解决实际问题时,学生也能进行思考,这个问题的解决过程运用了哪些数学思想、运用了哪些解题方法。在出现错误时,可以分析原因并总结原因,帮助自身构建数学思维,加强基础知识的理解,不断地培养学科素养。但是,需要注意的是,解题技巧和数学思想方法之间并不能完全对等,学生可以通过大量的练习来获取解题技巧,但是只有通过技巧的整理与归纳,才能达到知识方法的灵活应用。 三、关于初中数学学习方法的具体实施
为解决传统数学学习方法存在的问题,结合初中生的实际水平,为实现自身数学综合素养的提升,则需要严格按照以下几种学习方法完成数学知识的学习。
(一)加强课前知识预习
传统的课堂教学环节我们往往关注对所学知识的理解和掌握,但实际上比这些知识学习更加重要的是课前预习。因为学生对于新知识的理解程度会因为其个人能力产生差异,所以我们在学习新知识前应选择性地对重点难点部分进行剖析,一方面培养学生的探索意识,另一方面弥补学生在基础知识理解方面的缺陷,让学习过程能够具备针对性特征。
例如“以导函数知识的学习”为例,导函数的求解过程是由原函数发展而来,并且说明了导函数和原函数关于自变量的互相关系。而涉及到导函数的求证过程,仅仅通过课堂讲解是不够的,特别是很多变式的理解难度较大,因此可以考虑以预习的方法进行举一反三。
不过课前预习需要注意的是对于知识的筛选和整合,因为预习阶段始终是一个知识的“预处理”阶段,将重点难点进行标记后,应该通过自主学习的方法进行探究,而不是单纯依靠教师的讲解过程进行理解。这对于学生而言无疑是主观能动性方面的考验。
(二)引导学生参与数学课堂学习互动
新课程改革工作已经进行了很长一段时间,教师已经能够意识到学生是课堂的主体,因此在课程内容的学习时,会基于学生的能力要求和实际需要对课程进行调整,并且激发学生的探索和求知欲,让他们主动参与到问题的解决过程当中。例如小组合作方式就是一种典型的互动交流形式,能够让学生围绕数学知识和应用体系方面的内容进行探索。
例如,在初中数学多边封闭图形的内角和关系过程中,可以采取举例分析的方式,让学生对三角形、四边形、五边形、六边形等常见多边形的内角和尽心分析,通过多次举例分析后,可以发现其中存在的特定规律,在实现数学几何知识教学的同时,也能够使学生掌握基本的研究方法。
(三)构建多元化的学习方式
当前的数学课堂只有45分钟的时间,在这些时间内要想完全地将知识清晰直观地展现在学生面前难度比较大。因此,教师应采取更加多元化的方式来完成教学工作,前文提到的小组学习此时可以扮演重要角色。
分组学习顾名思义就是将学生进行划分,划分标准可以以学习能力,也可以以性格特点作为依据,但无论如何学生在能力方面是存在差异的,通过小组合作的方式进行查漏补缺,本身也是开展小组学习的主要目的。因此一些数学能力较强的学生可以担任组长,可以对其他组员进行帮扶,一方面促进小组成员的交流沟通,另一方面也能巩固数学理论知识。
除去分组学习外,还可以使用其它教学辅助措施,对于学生而言,采取的学习方法固然重要,但更重要的是如何形成数学解题意识,在日常学习的过程当中利用数学知识解决生活当中的实际问题,具备多元化的数学思维。
(四)充分利用互联网技术辅助学习
目前,计算机已经在全社会得到了普及,然而,对于初中生来说,却并没有养成利用计算机网络進行学习的习惯,除此之外,大量初中生沉迷于网络游戏,导致网络上数学资源的利用价值受到影响。
互联网从本质上看可以被认为是一个资源的“数据库”,数据库内部包含了大量与学生学习相关的教学内容,可以为教学提供便利。具体来看,教师可以按照学生能力差异选择与学生相互适应的学习内容开展集中训练,既能够保障学习过程的灵活程度,也能通过网络信息的便捷性进行针对性教学。例如慕课、在线教学、翻转课堂等都可以成为教学形式,完成对新知识的理解和旧知识的巩固。
结语
新课程标准中明确提出,应该在数学教学中关注知识的内化和吸收过程,并且按照学生的学习经验进行规划,开展更进一步的交流与合作,形成科学的学习方法和习惯。从未来的实际教学过程来看,教师也应该将重点放在学生的知识掌握情况方面,将其作为数学知识方法理解的基础,实现有形数学知识和无形数学思想间的紧密联系,让学生从形象思维过渡为辩证思维,强化学科素养的持续发展。
参考文献:
[1]李艳妮.初中数学教学应如何渗透数学思想和数学方法[J].赤子(上中旬).2015(12)
[2]孙敏.在初中数学课堂教学中渗透数学思想方法的策略探究[J].考试周刊.2013(98)
[3]朴昌虎.浅谈如何在初中数学课堂教学中渗透数学思想[J].中国校外教育.2011(22)
[4]黄家超.初中数学教学中如何渗透数学思想方法[J].教育教学论坛.2011(30)
[5]陈建国.初中数学教学中渗透数学思想方法的教学策略研究[J].亚太教育.2015(22)
[6]严君华.浅谈初中数学课堂教学中化归思想的渗透策略[J].数学教学通讯.2014(07)
【关键词】初中数学 数学思想 数学方法
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2020)50-0059-02
引言
“核心素养”的关键要素包括对数据的分析应用能力、建模运算能力和抽象逻辑分析能力等,还需要将数学思想方法融入教学环节之中。在现有的纵向设计模式的初中教材当中,所对应的思想方法也应该聚焦在重点和难点,目的在于让学生养成良好的逻辑思维,形成数学习惯。
一、初中数学教学中常见的数学思想方法
(一)分类讨论
分类讨论的核心要素在于对差异性进行准确评估,并以相同点作为切入点。对于不同的研究对象,我们可以考虑采用不同的逻辑方法进行分类讨论,以差异性和共同点为参考标准作为评估标准。通常情况下分类讨论会涉及到母项和子项的分析,前者指的是研究对象本身,后者指的是划分之后的概念与结果,两者之间通过相应的判定依据并借助分类讨论的思想理念之后可以让学习内容目标明确,为问题的研究和解决寻找解决的条件。例如,在绝对值的掌握过程中,如果我们将实数的学习过程划分为三个阶段——正数学习、负数学习和“零”知识的学习,一方面能够让学生快速理解和深化知识,另一方面能够培养思维意识。
(二)符号化思想
符号化思想是在问题解决的过程当中,将数学问题转化为符号问题,然后再进行问题的研究分析。在代数计算过程中,符号化思想的应用非常广泛,通常我们会将未知数表示为字母,在几何中使用表格、线段等符号,将复杂的文字内容进一步简化,让学生能够形成对知识的理解,比如在勾股定理的学习环节就可以以“三角形”作为研究符号,使用a2+b2=c2的代数式就可以进行符号化表示,充分结合问题的条件与表达结果,即便是某些复杂问题也能进行总结和概括。
(三)数形结合
数形结合的思想是最常见且最普遍的数学思想方法,利用图形的位置关系为依据,将与之相对应的数量关系式进行结合,两者看上去并未存在必要联系。但是,如果以某些相关条件为支撑就能够实现相互转化的过程。在图形计算等计算过程中可以实现数形结合,将两者的优势充分展示并发挥,一方面强化了学生的记忆认知,另一方面促进学生的思维创造。
解析:在该题目中,看似函数问题可以通过数形结合的方式将其转换至坐标轴中进行解决,为此,可以对题干中的公式进行如下转化:
(四)函数与方程
函数与方程思想在数学学科中起到基础性作用,利用变量之间的等量关系来进行分析,如方程、方程组等,都是以动态为依托进行静态问题的求解,重点对等量关系展开分析讨论。通常情况下,函数与方程都是以强化问题的理解为基础,将问题总结为几个不同方面,实现方程组、平面坐标系的建构等。思想方法的应用过程中,从本质上基于数学概念进行了解释,目的在于帮助和引导学生在分析和解决问题的过程中形成数学观点。
二、初中数学教学中数学思想方法渗透的方式
(一)重视数学知识的生成
数学本身具有抽象性的特点,其逻辑性要求比较高,学生在学习的环节要注意对某些概念形成自我意识,才能形成对知识的正确理解和掌握,特别是如何利用关键的数学思想与方法进行知识转变与联动。且需要基于學生的先验知识与实践基础之上,强调学生在知识学习中的思考与研究。例如,在《圆与圆的位置关系》的知识学习过程中,教师可以让学生理解知识转化的过程,将数学概念转化为“两个圆的圆心距与两个圆半径关系的对比”,从而实现内容的概括;在《函数最小值和最大值》的知识学习中,可以借助函数图像与数形结合的思想方法来求极值。诸如此类的知识教学过程都高度重视数学基础知识的学习过程,借助不同的数学思想方法来纳入知识结构,从概括知识的高度上升到归纳提炼的高度,强化学生的数学意识和数学能力发展,提升学生学习的主动性和积极性。
(二)实践过程中的思想方法应用
数学本身是一项抽象性突出的学科,不仅要关注学生获取知识的过程,还要关注思维创新的过程,尤其是对于问题的提出和分析能力,在问题解决方面取得进步。例如,在数列知识的求解过程中,学生往往会觉得难度较大,寻找不到正确的学习方法,但是利用数形结合思想就可以将问题变得更加简单。举例来说,1/2+1/22+1/23+…+1/2n的计算过程中,教师可以利用多媒体设备演示,将一个正方形一直进行对半划分。如果正方形的边长设为1,则面积就是1/2,正方形的一半,之后的计算结果分别是正方形面积的1/4,以此类推得到最终结果。在教学过程中,教师应该注重对教学过程的反思,寻找出其中存在的问题和不足,必要时可以将某些重点与难点的特殊性问题转化为一般性问题,让学生具备特殊性问题的分析解决能力。
(三)知识点归纳过程中的思想方法提炼
知识点归纳一般以每个单元的复习和总复习为主,而即便是同一种数学思想方法也可以在不同的知识点学习中发挥作用。教师的工作就是将隐藏在知识结构之后的思想方法进行总结,便于学生进行理解和掌握,学会知识的融会贯通。在解决实际问题时,学生也能进行思考,这个问题的解决过程运用了哪些数学思想、运用了哪些解题方法。在出现错误时,可以分析原因并总结原因,帮助自身构建数学思维,加强基础知识的理解,不断地培养学科素养。但是,需要注意的是,解题技巧和数学思想方法之间并不能完全对等,学生可以通过大量的练习来获取解题技巧,但是只有通过技巧的整理与归纳,才能达到知识方法的灵活应用。 三、关于初中数学学习方法的具体实施
为解决传统数学学习方法存在的问题,结合初中生的实际水平,为实现自身数学综合素养的提升,则需要严格按照以下几种学习方法完成数学知识的学习。
(一)加强课前知识预习
传统的课堂教学环节我们往往关注对所学知识的理解和掌握,但实际上比这些知识学习更加重要的是课前预习。因为学生对于新知识的理解程度会因为其个人能力产生差异,所以我们在学习新知识前应选择性地对重点难点部分进行剖析,一方面培养学生的探索意识,另一方面弥补学生在基础知识理解方面的缺陷,让学习过程能够具备针对性特征。
例如“以导函数知识的学习”为例,导函数的求解过程是由原函数发展而来,并且说明了导函数和原函数关于自变量的互相关系。而涉及到导函数的求证过程,仅仅通过课堂讲解是不够的,特别是很多变式的理解难度较大,因此可以考虑以预习的方法进行举一反三。
不过课前预习需要注意的是对于知识的筛选和整合,因为预习阶段始终是一个知识的“预处理”阶段,将重点难点进行标记后,应该通过自主学习的方法进行探究,而不是单纯依靠教师的讲解过程进行理解。这对于学生而言无疑是主观能动性方面的考验。
(二)引导学生参与数学课堂学习互动
新课程改革工作已经进行了很长一段时间,教师已经能够意识到学生是课堂的主体,因此在课程内容的学习时,会基于学生的能力要求和实际需要对课程进行调整,并且激发学生的探索和求知欲,让他们主动参与到问题的解决过程当中。例如小组合作方式就是一种典型的互动交流形式,能够让学生围绕数学知识和应用体系方面的内容进行探索。
例如,在初中数学多边封闭图形的内角和关系过程中,可以采取举例分析的方式,让学生对三角形、四边形、五边形、六边形等常见多边形的内角和尽心分析,通过多次举例分析后,可以发现其中存在的特定规律,在实现数学几何知识教学的同时,也能够使学生掌握基本的研究方法。
(三)构建多元化的学习方式
当前的数学课堂只有45分钟的时间,在这些时间内要想完全地将知识清晰直观地展现在学生面前难度比较大。因此,教师应采取更加多元化的方式来完成教学工作,前文提到的小组学习此时可以扮演重要角色。
分组学习顾名思义就是将学生进行划分,划分标准可以以学习能力,也可以以性格特点作为依据,但无论如何学生在能力方面是存在差异的,通过小组合作的方式进行查漏补缺,本身也是开展小组学习的主要目的。因此一些数学能力较强的学生可以担任组长,可以对其他组员进行帮扶,一方面促进小组成员的交流沟通,另一方面也能巩固数学理论知识。
除去分组学习外,还可以使用其它教学辅助措施,对于学生而言,采取的学习方法固然重要,但更重要的是如何形成数学解题意识,在日常学习的过程当中利用数学知识解决生活当中的实际问题,具备多元化的数学思维。
(四)充分利用互联网技术辅助学习
目前,计算机已经在全社会得到了普及,然而,对于初中生来说,却并没有养成利用计算机网络進行学习的习惯,除此之外,大量初中生沉迷于网络游戏,导致网络上数学资源的利用价值受到影响。
互联网从本质上看可以被认为是一个资源的“数据库”,数据库内部包含了大量与学生学习相关的教学内容,可以为教学提供便利。具体来看,教师可以按照学生能力差异选择与学生相互适应的学习内容开展集中训练,既能够保障学习过程的灵活程度,也能通过网络信息的便捷性进行针对性教学。例如慕课、在线教学、翻转课堂等都可以成为教学形式,完成对新知识的理解和旧知识的巩固。
结语
新课程标准中明确提出,应该在数学教学中关注知识的内化和吸收过程,并且按照学生的学习经验进行规划,开展更进一步的交流与合作,形成科学的学习方法和习惯。从未来的实际教学过程来看,教师也应该将重点放在学生的知识掌握情况方面,将其作为数学知识方法理解的基础,实现有形数学知识和无形数学思想间的紧密联系,让学生从形象思维过渡为辩证思维,强化学科素养的持续发展。
参考文献:
[1]李艳妮.初中数学教学应如何渗透数学思想和数学方法[J].赤子(上中旬).2015(12)
[2]孙敏.在初中数学课堂教学中渗透数学思想方法的策略探究[J].考试周刊.2013(98)
[3]朴昌虎.浅谈如何在初中数学课堂教学中渗透数学思想[J].中国校外教育.2011(22)
[4]黄家超.初中数学教学中如何渗透数学思想方法[J].教育教学论坛.2011(30)
[5]陈建国.初中数学教学中渗透数学思想方法的教学策略研究[J].亚太教育.2015(22)
[6]严君华.浅谈初中数学课堂教学中化归思想的渗透策略[J].数学教学通讯.2014(07)