论文部分内容阅读
Aimed at the relatively lower energy density and complicated coordinating operation between two power sources, a special energy control strategy is required to maximize the fuel saving potential. Then a new type of configuration for hydrostatic transmission hybrid vehicles (PHHV) and the selection criterion for impor-tant components are proposed. Based on the optimization of planet gear transmission ratio and the analysis of op-timal energy distribution for the proposed PHHV on a representative urban driving cycle, a fuzzy torque control strategy and a braking energy regeneration strategy are designed and developed to realize the real-time control of energy for the proposed PHHV. Simulation results demonstrate that the energy control strategy effectively im-proves the fuel economy of PHHV.