论文部分内容阅读
统计学习理论(Statistical Learning Theory或SLT)是研究有限样本情况下机器学习规律的理论。支持向量机(Support Vector Machines或SVM)是基于统计学习理论框架下的一种新的通用机器学习方法。它不但较好地解决了以往困扰很多学习方法的小样本、过学习、高维数、局部最小等实际难题,而且具有很强的泛化(预测)能力。文中使用支持向量机对中国大陆最大地震时间序列进行预测,预测次年的我国大陆最大地震震级,结果表明该方法具有较好的预报效果。研究结果还表明我国大陆强震活动除了与强震时间序列本身有关外,还与全球的强震活动、太阳黑子活动等有密切的关系。尽管这种关系还不清楚,但是通过支持向量机可以很好地反应出这种非线性关系。