论文部分内容阅读
The oxidative polycondensation reaction conditions of 2-[(2-hydroxyphenyliminomethylbenzylidene)amino-phenol] (2-HPIMBAP) has been accomplished by using air O2 and NaOCl oxidants in an aqueous alkaline medium between50-90℃. The optimum reaction conditions of the oxidative polycondensation and the main parameters of the process wereestablished. At the optimum reaction conditions, yield of the products were found to be 67.72% and 61.49% for air O2 andNaOCl oxidants respectively. The structures of the monomer and oligomer were confirmed by FT-IR, UV-Vis, 1H-NMR and13C-NMR and elemental analysis. Also, TGA-DTA, SEC techniques and solubility tests were applied for characterization.1H-NMR and 13C-NMR data show that the polymerization proceeded by the C-C and C-O-C coupling systems of orthoand para positions and oxyphenylene according to-OH group of 2-HPIMBAP. The number-average molecular weight(Mn), weight-average molecular weight (Mw) and polydispersity index (PDI) values of oligo[2-(2-hydroxyphenyliminomethylbenzylidene)aminophenol] (oligo(2-HPIMBAP)) were determined. Thermal analyses of oligomer-metal complexeswere investigated in N2 atmosphere between 15-1000℃. Electrical conductivities of oligo(2-HPIMBAP) and oligomer-metalcomplexes measured with four point technique. Electrical conductivity of the oligo(2-HPIMBAP) was measured, showingthat the oligomer is a typical semiconductor. Optical band gaps (Eg) of 2-HPIMBAP, oligo(2-HPIMBAP) and oligomer-metal complex compounds were determined by UV-Vis measurements. The monomer and oligomer were screened forantibacterial activities.