论文部分内容阅读
提出了一种用概率神经网络(PNN)检测图像随机脉冲噪声点方法。首先提取已知图像脉冲噪声像素点的特征作为PNN的输入,然后建立了PNN脉冲噪声点识别模型,再对其它噪声图像的每一个像点进行识别,最后只对噪声点进行中值滤波。Matlab仿真实验表明,同BPNN检测方法相比,该网络能明显提高识别正确率,因此有更好的脉冲噪声滤除效果,且该方法滤除脉冲噪声简单快速,是一种较好的神经网络图像脉冲噪声识别滤除方法。