最终范数连续半群的扰动

来源 :山西大学学报:自然科学版 | 被引量 : 0次 | 上传用户:zhangg91
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
主要给出了一个在Hilbert空间中最终范数连续半群的扰动定理.设T(t)为Hilbert空间H上的C0半群,当t〉t0≥0时按范数连续,A为其无穷小生成元.又设B是A相时有界的,D(A)真包含D(B),T(t)B真包含BT(t),且存在δ〉0使得K0〈+∞.这里Kλ=sup{∫^δ 0e-λt‖BT(t)x‖dt│x∈D(A),‖x‖≤1},(λ≥0),则当2│ε│<1/lim λ→∞Kλ时,A+εB生成半群TB(t)且TB(t)当T>2t0时按范数连续。
其他文献
利用2005年7月盘锦芦苇湿地生长旺季的小气候梯度系统30min观测资料和开放式涡动相关系统10Hz原始观测资料,比较并分析了廓线法、波文比能量平衡法与涡动相关法计算的芦苇湿地
基于1987~1993年盘锦湿地芦苇(Phragmites communis)物候数据,分析了芦苇的萌动期、展叶期、开花期和枯黄期的物候特征,探讨了芦苇物候期与气候因子的关系,并利用2种积温模型模拟了