论文部分内容阅读
针对卷积神经网络在图像识别任务上模型复杂度大、参数量多,首先提出了一种轻量化的SepNet网络结构,该结构在分类器模块上采用克罗内克积替换了传统的全连接层。为进一步优化网络结构,在特征提取模块均衡网络深度、宽度,设计了一个利用深度可分离卷积和残差网络的可分离残差模块,最终形成了一个能实现端到端训练的轻量化网络架构,称为sep_res18_s3。实验分别在MNIST、CIFAR-10、CIFAR-100数据集上验证SepNet的有效性,设计的SepNet网络结构相比VGG10,参数数量和运算量在不损失