论文部分内容阅读
决策树算法是经典的分类挖掘算法之一,具有广泛的实际应用价值。经典的ID3决策树算法是内存驻留算法,只能处理小数据集,在面对海量数据集时显得无能为力。为此,对经典ID3决策树生成算法的可并行性进行了深入分析和研究,利用云计算的MapReduce编程技术,提出并实现面向海量数据的ID3决策树并行分类算法。实验结果表明该算法是有效可行的。