论文部分内容阅读
为提高支持向量回归在时间序列预测应用中的学习速度和泛化性能,提出了稀疏型支持向量回归方法.通过牛顿优化法,直接优化支持向量回归的原始问题.然后利用Cholesky分解更新原始优化中的Hessian矩阵实现稀疏型支持向量回归算法.最后将该算法运用到Mackey—Glass,Lorenz和Logistic混沌时间序列预测,仿真结果表明本文提出的方法能够在确保预测精度的前提下,有效地降低支持向量的个数.