论文部分内容阅读
小麦麦穗的自动检测在产量预估、种子筛选等方面具有一定的科研应用价值。为进一步提高自然环境下麦穗识别与计数的准确性,本文提出了基于改进型Faster R-CNN深度神经网络麦穗检测方法。针对传统Faster R-CNN算法应用于麦穗检测时存在漏检的问题,并结合自然环境下麦穗重叠和遮挡的特点,本研究采用加权框融合(Weighted Boxes Fusion,WBF)算法代替原有的非极大值抑制(NMS)算法,通过区域建议网络产生的所有预测框的置信度来构造融合框。试验证明,改进后的Faster R-CNN在