改进的三角网构网算法用于LiDAR树冠体积提取(英文)

来源 :红外与毫米波学报 | 被引量 : 0次 | 上传用户:bfhx1314
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在分析现存点云处理方法的特性后,通过改进三角网构网算法的算法机制,提出了一种基于空间分割的分块优先级机制的三角网表面重建算法,用于重构树冠表面,实现树冠体积的准确提取.通过可视化方法对比了多种算法的点云构网效果,以实验区选定的30棵树为研究对象,利用T-LiDAR获取树冠点云数据,通过人工方法、传统算法和本文的改进算法计算树冠体积,对这些结果进行了对比分析.分析发现:四种方法之间均显示出较好的相关性(R2>=0.831),其中所提出的改进Delaunay方法拥有理想的精度,较好稳定性和最少的耗费时间.实验结果表明,提出的算法在点云(尤其是T-LiDAR数据)树冠的体积提取中具有很大的优势.结合T-LiDAR数据还可以实现树冠表面积和生物量等树冠因子的高精度快速提取. After analyzing the characteristics of existing point cloud processing methods, this paper proposes a triangulation mesh surface reconstruction algorithm based on spatial partitioning and block prioritization mechanism, which is used to reconstruct the crown surface and achieve Tree crown volume extraction.Compared with the visual effects of many algorithms, the 30 trees selected in the experimental area were selected as research objects, and the data of crown point cloud were obtained by T-LiDAR. The artificial algorithm, the traditional algorithm And the improved algorithm in this paper, the crown volume was calculated and the results were compared and analyzed.It was found that there was a good correlation between the four methods (R2> = 0.831), and the proposed improved Delaunay method possessed the ideal Accuracy, good stability and least time-consuming.The experimental results show that the proposed algorithm has a great advantage in the volumetric extraction of the canopy (especially the T-LiDAR data) canopy.Combination of T-LiDAR data also can achieve the crown Surface area and biomass and other canopy factor high-precision rapid extraction.
其他文献
异位妊娠是指胚胎植入子宫体腔以外的部位,其中98%发生在输卵管[1]。在西方国家,异位妊娠约占妊娠总数的1.5-2%[2],在发展中国家其发生率甚至更高[3]。作为具有高度危险的妊娠早