论文部分内容阅读
针对支持向量机(Support Vector Machine,SVM)在分类问题上的运用,分析在结构风险中采用一般范数控制模型的复杂性问题,提出基于l1-,.范数和l∞-范数的两种线性规划支持向量机,包括线性支持向量机和非线性支持向量机.采用模拟数据对4种支持向量机进行数值试验,其中有3种是线性规划支持向量机(包括提出的两种支持向量机)和经典的二次规划支持向量机.实验结果表明,对线性支持向量机中3种支持向量机计算的模型参数均与理论值接近;对非线性支持向量机情形中l1-范数支持向量机具有最少的支持向量和较好