论文部分内容阅读
In this paper, we study how to design filters for nonlinear uncertain systems over sensor networks. We introduce two Kalman-type nonlinear filters in centralized and distributed frameworks. Moreover, the tuning method for the parameters of the filters is established to ensure the consistency, i.e., the mean square error is upper bounded by a known parameter matrix at each time. We apply the consistent filters to the track-to-track association analysis of multi-targets with uncertain dynamics. A novel track-to-track association algorithm is proposed to identify whether two tracks are from the same target. It is proven that the resulting probability of mis-association is lower than the desired threshold. Numerical simulations on track-to-track association are given to show the effectiveness of the methods.