论文部分内容阅读
Mg2Ni-type Mg20-xYxNi10 (x =0,1,2,3 and 4) electrode alloys were fabricated by vacuum induction melting.Subsequently,the as-cast alloys were mechanically milled on a planetary-type ball mill.The effects of milling time and Y content on the microstructures and electrochemical performances of the alloys were investigated in detail.The results show that nanocrystalline and amorphous structure can be successfully obtained through mechanical milling.The substitution of Y for Mg facilitates the glass forming of the Mg2Ni-type alloy and significantly enhances the electrochemical characteristics of the alloy electrodes.Moreover,the discharge capacity of Y-free alloy monotonously grows with the milling time prolonging,while that of the Y-substituted alloys has the maximum values in the same case.The milling time of obtaining the greatest discharge capacity markedly decreases with Y content increasing.The electrochemical kinetics of the alloys,including high rate discharge ability (HRD),diffusion coefficient (D),limiting current density (IL) and charge transfer rate,monotonously increase with milling time extending.