论文部分内容阅读
以多批次黄桃脆片为分析对象,分别采集了可见/短波近红外光谱(400~1000 nm)和长波近红外光谱(1000~2500 nm)原始信息,分别采用标准正态变量变换(SNV)、多元散射校正(MSC)、移动平均平滑(MS),一阶导数(1-Der)预处理后,建立了全波段线性偏最小二乘法(PLS)和非线性支持向量机(SVM)预测模型,并结合外部试验进行可行性验证。结果表明,基于MSC-SVM的可见/短波红外光谱模型对可溶性固形物预测效果最佳,验证集的决定系数(R p)、预测均方根误差(RMSEP)、相对预测偏差(