论文部分内容阅读
针对仅利用欧氏距离不能准确反映相空间中相点间的相似性大小,提出一种改进预测模型,该模型同时考虑相点间的欧氏距离和相似性来选取邻近点。在对交通流量时间序列进行相空间重构后,运用最小二乘支持向量机分别对不同方法得到的邻近点进行训练,并对未来时段的交通流量进行了多步预测。实际案例的预测结果表明,改进方法比一般方法具有更好的适应能力和预测精度。