论文部分内容阅读
提出一种基于多子空间KL变换的纹理图像自监督分割方法。该方法将非监督聚类转变为有典型特征样本指导的自监督分类,解决误分类率高的问题。采用多子空间方法对样本进行特征选择,克服假设所有纹理特征都属于单个高斯分布的局限性。首先,对待分割图像进行多尺度、多方向的Gabor变换,使用模糊C均值方法从变换结果中提取具有典型性的样本作为训练样本;然后,使用训练样本为每一个类别生成一个单独的初始子空间;最后,采用多子空间KL变换,对其余样本在迭代过程中进行类别划分。实验结果证明,本文方法能够减少误分类率,改善分割效果。