论文部分内容阅读
为获得更高的功率附加效率,采用了E类峰值放大器代替传统反向Doherty功放中的C类峰值放大器。E类峰值放大器的负载网络由一个阻抗匹配电路和两个谐波抑制电路组成。通过分析,得出了功放的设计步骤,同时为了证明分析的有效性,设计了一个工作在1.96GHz,输出为38dBm的带E类峰值放大器的反向Doherty功放。仿真结果显示,在输出功率为38dBm时,与平衡AB类功放和传统反向Doherty功放相比,带E类峰值放大器的反向Doherty功放分别有11.5%和1.1%的功率附加效率的提升。当输出功率从24dBm到38dBm变化时,测得的二次和三次谐波抑制分别大于36dB和30dB。
In order to obtain higher power added efficiency, the use of Class E peak amplifier instead of the traditional reverse Doherty amplifier Class C peak amplifier. Class E peak amplifier load network consists of an impedance matching circuit and two harmonic suppression circuit. Through the analysis, the design steps of the power amplifier are obtained. In order to prove the validity of the analysis, a reverse Doherty power amplifier with class E peak amplifier operating at 1.96GHz and output of 38dBm is designed. The simulation results show that the reverse Doherty amplifier with class E peaking amplifier has 11.5% and 1.1% power added efficiency improvement respectively compared with the balanced class AB amplifier and the traditional reverse Doherty amplifier when the output power is 38dBm. When the output power changes from 24dBm to 38dBm, the measured second and third harmonic rejection are greater than 36dB and 30dB, respectively.