论文部分内容阅读
1数学建模及其背景数学建模是对实际问题本质属性进行抽象而又简洁刻画的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.建模的过程包括模型准备、模型假设、模型建立、模型求解、模型分析、模型检验和模型应用与推广.数学建模是一种卓越的思维方式,一种强大的解决问题的策略,对培养学生分析问题、解决问题的
A. Mathematical Modeling and Its Background Mathematical modeling is a mathematical symbol, mathematical formula, program or graph that abstract and concisely describes the essential attributes of practical problems. It can explain some objective phenomena or predict future development rules , Or to provide some sense of the optimal strategy or better strategy to control the development of a phenomenon.The modeling process includes model preparation, model assumptions, model building, model solving, model analysis, model checking and model application Promotion.Mathematical modeling is a superior way of thinking, a powerful strategy to solve the problem, to train students to analyze and solve problems