Coupling phase field with creep damage to study evolution and creep deformation of single crystal su

来源 :材料科学技术(英文版) | 被引量 : 0次 | 上传用户:hznewblue
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A phase-field model coupling with elastoplastic deformation and creep damage has been built to study the microstructural evolution and deformation behavior for Ni-Al single crystal alloy during the whole creep processing.The relevant experiments were conducted to verify the model validity.The simulation results show that under the tensile creep at 1223 K/100 MPa,cubic γ'phases coarsen along the direction parallel to the axis of tensile stress during the first two creep stages;and spindle-shaped and wavy γ'phases are formed during tertiary creep,similar to the experimental results.The evolution mechanism ofγ'phases is analyzed from the perspective of changes of stress and strain fields.The “island-like” γ phase is observed and its formation mechanism is discussed.With the increase of creep stress,the directional coarsening of γ'phase is accelerated,the steady-state creep rate is increased and the creep life is decreased.The comparison between simulated and experimental creep curves shows that this phase-field model can effectively simulate the performance changes during the first two creep stages and predict the influence of creep stresses on creep properties.Our work provides a potential approach to synchronously simulate the creep microstructure and property of superalloys strengthened by γ'precipitates.
其他文献
As a new class of lithium rich cathodes,disordered rock-salt cathodes have been of primary interest,because of their ability to deliver a promisingly high capac
CsPbI2 Br is an ideal inorganic perovskite material with a reasonable bandgap for solar cell applications because of its advantage of superior thermal and phase
铜钢复合钢板HALF弯片弯曲半径小,冲压成形变形量大,易出现复合界面开裂、脱层问题.采用ABAQUS三维有限元软件对HALF弯片热成形过程进行数值模拟,分析了600℃、700℃、800℃
Phase constitutions,either changed by alloying or by phase transformation,are the key factors to determine the magnetic and mechanical performances of high-entr
Surface mechanical attrition treatment (SMAT) method is an effective way to generate nanograined (NG) surface on Ti-25Nb-3Mo-2Sn-3Zr (wt.%) (named as TLM),a kind
采用物理气相沉积工艺在黄铜H62垫片上制备了DLC薄膜,对DLC薄膜进行了拉曼光谱分析和截面形貌观察,测试了薄膜厚度、纳米硬度和结合力,进行了磨擦磨损试验,分析了薄膜的减摩
1.IntroductionrnDendritic structure are commonly encountered during solidification [1-4], especially in systems freezing with relatively low entropies of transf
期刊
The control of grain morphology is important in laser additive manufacturing (LAM),as grain morphology further affects the hot cracking resistance,anisotropy,an
This study used the pseudo-spinodal mechanism to obtain the ultrafine α phase for designing high-strength titanium alloy.Diffusion multiple experiments were de
This study investigates the effects of fine and coarse undissolved particles in a billet of the Mg-7Sn-1Al-1Zn (TAZ711) alloy on the dynamic recrystallization (