论文部分内容阅读
依测度收敛这一概念使集合的测度与极限交混在一起,变得非常抽象而不易理解。为了使这一抽象概念形象具体,在依测度收敛概念的教学中可以运用构造法、形象法及转化法,通过构造处处不收敛的特殊函数列引出依测度收敛的定义,并且运用函数图像和点集的特征刻画了依测度收敛的几何意义,从而使抽象的依测度收敛概念形象化,运用这一几何意义可快速判断一些函数列是否依测度收敛。同时,又借助函数列的依测度收敛与几乎处处收敛之间的相互转换,不需要用精细的测度论方法便可筒捷地将普通收敛的唯一性与连续性推广到依测度收敛。