论文部分内容阅读
针对当前政府和社会对空巢老人的识别缺乏有效技术手段的问题,提出了一种基于加权随机森林算法的空巢电力用户识别方法。首先通过调查问卷获取部分准确空巢用户标签,并从用电水平、用电波动、用电趋势3个方面构建用户用电特征库,由于空巢与非空巢存在用户数据不平衡问题,采用加权随机森林算法改善机器学习对数据敏感的现象,将该算法模型在电力公司采集系统部署上线,并对2 000户未知类型用户进行空巢识别,其空巢识别准确率达到74.2%。结果表明,从用电角度研究对空巢老人的识别,可以帮助电网公司了解空巢老人的个性化、差异化