论文部分内容阅读
针对基于磁场定向控制的永磁直线同步电机(PMLSM)伺服系统的位置精准控制问题,提出了一种TSK型递归模糊神经网络(TSKRFNN)控制方法。在考虑了系统易受参数变化、外部扰动和摩擦力等不确定性因素影响的基础上,建立了含有不确定性因素在内的PMLSM动态数学模型;利用TSKFRNN对系统同时进行了实时在线的结构学习和参数学习,提高了系统抑制不确定性因素的鲁棒性,保证了系统的动态跟踪性能。实验及研究结果表明:与模糊神经网络PID控制方法相比,TSKFRNN可以有效辨识电机参数,抑制系统的不确定性对系统伺服性